Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 17(1): 728, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115935

RESUMO

BACKGROUND: MicroRNAs may act as oncogenes or tumour suppressor genes, which make these small molecules potential diagnostic/prognostic factors and targets for anticancer therapies. Several common oncogenic microRNAs have been found for canine mammary cancer and human breast cancer. On account of this, large-scale profiling of microRNA expression in canine mammary cancer seems to be important for both dogs and humans. METHODS: Expression profiles of 317 microRNAs in 146 canine mammary tumours of different histological type, malignancy grade and clinical history (presence/absence of metastases) and in 25 control samples were evaluated. The profiling was performed using microarrays. Significance Analysis of Microarrays test was applied in the analysis of microarray data (both unsupervised and supervised data analyses were performed). Validation of the obtained results was performed using real-time qPCR. Subsequently, predicted targets for the microRNAs were searched for in miRBase. RESULTS: Results of the unsupervised analysis indicate that the primary factor separating the samples is the metastasis status. Predicted targets for microRNAs differentially expressed in the metastatic vs. non-metastatic group are mostly engaged in cell cycle regulation, cell differentiation and DNA-damage repair. On the other hand, the supervised analysis reveals clusters of differentially expressed microRNAs unique for the tumour type, malignancy grade and metastasis factor. CONCLUSIONS: The most significant difference in microRNA expression was observed between the metastatic and non-metastatic group, which suggests a more important role of microRNAs in the metastasis process than in the malignant transformation. Moreover, the differentially expressed microRNAs constitute potential metastasis markers. However, validation of cfa-miR-144, cfa-miR-32 and cfa-miR-374a levels in blood samples did not follow changes observed in the non-metastatic and metastatic tumours.


Assuntos
Doenças do Cão/genética , Perfilação da Expressão Gênica/veterinária , Neoplasias Mamárias Animais/genética , MicroRNAs/genética , Animais , Cães , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Mamárias Animais/patologia , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos/veterinária
2.
Mediators Inflamm ; 2016: 5230219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27212807

RESUMO

Recent studies indicate the critical role of tumour associated macrophages, tumour associated neutrophils, dendritic cells, T lymphocytes, and natural killer cells in tumourigenesis. These cells can have a significant impact on the tumour microenvironment via their production of cytokines and chemokines. Additionally, products secreted from all these cells have defined specific roles in regulating tumour cell proliferation, angiogenesis, and metastasis. They act in a protumour capacity in vivo as evidenced by the recent studies indicating that macrophages, T cells, and neutrophils may be manipulated to exhibit cytotoxic activity against tumours. Therefore therapy targeting these cells may be promising, or they may constitute drug or anticancer particles delivery systems to the tumours. Herein, we discussed all these possibilities that may be used in cancer treatment.


Assuntos
Neoplasias/terapia , Animais , Humanos , Macrófagos/metabolismo , Macrófagos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA