Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photoacoustics ; 33: 100555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021286

RESUMO

Photoacoustic (PA) imaging has the potential to deliver non-invasive diagnostic information. However, skin tone differences bias PA target visualization, as the elevated optical absorption of melanated skin decreases optical fluence within the imaging plane and increases the presence of acoustic clutter. This paper demonstrates that short-lag spatial coherence (SLSC) beamforming mitigates this bias. PA data from the forearm of 18 volunteers were acquired with 750-, 810-, and 870-nm wavelengths. Skin tones ranging from light to dark were objectively quantified using the individual typology angle (ITA°). The signal-to-noise ratio (SNR) of the radial artery (RA) and surrounding clutter were measured. Clutter was minimal (e.g., -16 dB relative to the RA) with lighter skin tones and increased to -8 dB with darker tones, which compromised RA visualization in conventional PA images. SLSC beamforming achieved a median SNR improvement of 3.8 dB, resulting in better RA visualization for all skin tones.

2.
Biomed Phys Eng Express ; 7(6)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34496358

RESUMO

Styrene-ethylene/butylene-styrene (SEBS) copolymer-in-mineral oil gel is an appropriate tissue-mimicking material to manufacture stable phantoms for ultrasound and photoacoustic imaging. Glycerol dispersion has been proposed to further tune the acoustic properties and to incorporate hydrophilic additives into SEBS gel. However, this type of material has not been investigated to produce wall-less vascular flow phantom for these imaging modalities. In this paper, the development of a wall-less vascular phantom for ultrasound and photoacoustic imaging is reported. Mixtures of glycerol/TiO2-in-SEBS gel samples were manufactured at different proportions of glycerol (10%, 15%, and 20%) and TiO2(0% to 0.5%) to characterize their optical and acoustic properties. Optical absorption in the 500-950 nm range was independent of the amount of glycerol and TiO2, while optical scattering increased linearly with the concentration of TiO2. Acoustic attenuation and speed of sound were not influenced by the presence of TiO2. The sample manufactured using weight percentages of 10% SEBS, 15% glycerol, and 0.2% TiO2was selected to make the vascular phantom. The phantom proved to be stable during the pulsatile blood-mimicking fluid (BMF) flow, without any observed damage to its structure or leaks. Ultrasound color Doppler images showed a typical laminar flow, while the B-mode images showed a homogeneous speckled pattern due to the presence of the glycerol droplets in the gel. The photoacoustic images of the phantom showed a well-defined signal coming from the surface of the phantom and from the vessels where BMF was flowing. The Spearman's correlations between the photoacoustic and tabulated spectra calculated from the regions containing BMF, in this case a mixture of salt solutions (NiCl2and CuSO4), were higher than 0.95. Our results demonstrated that glycerol-in-SEBS gel was an adequate material to make a stable vascular flow phantom for ultrasound photoacoustic imaging.


Assuntos
Técnicas Fotoacústicas , Glicerol , Imagens de Fantasmas , Estirenos , Ultrassonografia
3.
IEEE Trans Biomed Eng ; 68(1): 68-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356735

RESUMO

OBJECTIVE: Nanotheranostic systems integrate therapeutic and diagnostic procedures using nanotechnology. This type of approach has enabled the development of methods for early detection and treatment of different pathologies. Magnetic hyperthermia (MH) has been proposed as an alternative or complementary method of cancer therapy. However, challenges such as delivering and localizing the magnetic nanoparticles (MNPs) within tissues and monitoring the temperature during the treatment hinder this technique to be effectively translated into a clinical routine. Therefore, in this study a theranostic platform has been proposed and examined to address two main issues, localizing MNPs and real-time temperature monitoring, for preclinical MH. METHODS: The system integrates magnetomotive (MMUS) and thermal ultrasound imaging with MH. An ultrasound device was used to acquire MMUS images to detect MNPs, and ultrasound thermometry to monitor the temperature. This platform was designed such that a single coil generated the magnetic field for MMUS and MH. The feasibility of the system was examined using a tissue mimicking phantom containing an inclusion filled with zinc substituted magnetite NPs. RESULTS: These MNPs were effectively used as contrast agent for MMUS and to generate heat during MH. In addition to localizing MNPs, real-time two-dimensional temperature maps were obtained with substantial concordance (ρc > 0.97) with invasive measurements using fiber optic thermometer. The heating rate was proportional to the displacements in MMUS (r = 0.92). CONCLUSION: Ultrasound thermometry was successfully used to monitor the temperature during MH. In addition, it was shown that acquiring MMUS images prior to MH can qualitatively predict the temperature distribution of the MNP-laden regions.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Humanos , Hipertermia , Fenômenos Magnéticos , Medicina de Precisão , Ultrassonografia
4.
Sensors (Basel) ; 20(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708170

RESUMO

Photoacoustic imaging (PAI) combines optical contrast with ultrasound spatial resolution and can be obtained up to a depth of a few centimeters. Hand-held PAI systems using linear array usually operate in reflection mode using a dark-field illumination scheme, where the optical fiber output is attached to both sides of the elevation plane (short-axis) of the transducer. More recently, bright-field strategies where the optical illumination is coaxial with acoustic detection have been proposed to overcome some limitations of the standard dark-field approach. In this paper, a novel multiangle long-axis lateral illumination is proposed. Monte Carlo simulations were conducted to evaluate light delivery for three different illumination schemes: bright-field, standard dark-field, and long-axis lateral illumination. Long-axis lateral illumination showed remarkable improvement in light delivery for targets with a width smaller than the transducer lateral dimension. A prototype was developed to experimentally demonstrate the feasibility of the proposed approach. In this device, the fiber bundle terminal ends are attached to both sides of the transducer's long-axis and the illumination angle of each fiber bundle can be independently controlled. The final PA image is obtained by the coherent sum of subframes acquired using different angles. The prototype was experimentally evaluated by taking images from a phantom, a mouse abdomen, forearm, and index finger of a volunteer. The system provided light delivery enhancement taking advantage of the geometry of the target, achieving sufficient signal-to-noise ratio at clinically relevant depths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA