Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766054

RESUMO

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
Nature ; 625(7996): 735-742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030727

RESUMO

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genética
3.
Nat Genet ; 56(1): 162-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036779

RESUMO

Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that nonsparse genetic architecture can lead to miscalibration, while imputation noise, nonuniform distribution of causal variants and quality control filters have minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer larger causal effects. Our methods show improved calibration, RFR and functional enrichment, competitive recall and computational efficiency. Notably, using our methods' posterior effect sizes substantially increases polygenic risk score accuracy over SuSiE and FINEMAP. Our work improves causal variant identification for complex traits, a fundamental goal of human genetics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Teorema de Bayes , Herança Multifatorial , Algoritmos
4.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014075

RESUMO

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

5.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37586368

RESUMO

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Diferenciação Celular , Ciclo Celular , Transcrição Gênica , Proteínas Nucleares/metabolismo , Fatores de Elongação da Transcrição/genética
6.
Nat Genet ; 55(8): 1267-1276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443254

RESUMO

Genome-wide association studies (GWASs) are a valuable tool for understanding the biology of complex human traits and diseases, but associated variants rarely point directly to causal genes. In the present study, we introduce a new method, polygenic priority score (PoPS), that learns trait-relevant gene features, such as cell-type-specific expression, to prioritize genes at GWAS loci. Using a large evaluation set of genes with fine-mapped coding variants, we show that PoPS and the closest gene individually outperform other gene prioritization methods, but observe the best overall performance by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not only well-established gene-trait relationships but nominating new genes at unresolved loci, such as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
Science ; 380(6648): eabo1131, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262146

RESUMO

We examined 454,712 exomes for genes associated with a wide spectrum of complex traits and common diseases and observed that rare, penetrant mutations in genes implicated by genome-wide association studies confer ~10-fold larger effects than common variants in the same genes. Consequently, an individual at the phenotypic extreme and at the greatest risk for severe, early-onset disease is better identified by a few rare penetrant variants than by the collective action of many common variants with weak effects. By combining rare variants across phenotype-associated genes into a unified genetic risk model, we demonstrate superior portability across diverse global populations compared with common-variant polygenic risk scores, greatly improving the clinical utility of genetic-based risk prediction.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Penetrância , Humanos , Estudo de Associação Genômica Ampla , Mutação , Fenótipo , Fatores de Risco
8.
medRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37205493

RESUMO

We examined 454,712 exomes for genes associated with a wide spectrum of complex traits and common diseases and observed that rare, penetrant mutations in genes implicated by genome-wide association studies confer ∼10-fold larger effects than common variants in the same genes. Consequently, an individual at the phenotypic extreme and at the greatest risk for severe, early-onset disease is better identified by a few rare penetrant variants than by the collective action of many common variants with weak effects. By combining rare variants across phenotype-associated genes into a unified genetic risk model, we demonstrate superior portability across diverse global populations compared to common variant polygenic risk scores, greatly improving the clinical utility of genetic-based risk prediction. One sentence summary: Rare variant polygenic risk scores identify individuals with outlier phenotypes in common human diseases and complex traits.

9.
medRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945604

RESUMO

The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with ß-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.

10.
Nat Genet ; 54(12): 1803-1815, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36474045

RESUMO

The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla
11.
Blood ; 139(16): 2534-2546, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35030251

RESUMO

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


Assuntos
Anemia , Fator de Transcrição GATA1 , Diferenciação Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos
12.
Nat Commun ; 12(1): 5242, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475398

RESUMO

Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) at >250 loci in the human genome to type 2 diabetes (T2D) risk. For each locus, identifying the functional variant(s) among multiple SNPs in high linkage disequilibrium is critical to understand molecular mechanisms underlying T2D genetic risk. Using massively parallel reporter assays (MPRA), we test the cis-regulatory effects of SNPs associated with T2D and altered in vivo islet chromatin accessibility in MIN6 ß cells under steady state and pathophysiologic endoplasmic reticulum (ER) stress conditions. We identify 1,982/6,621 (29.9%) SNP-containing elements that activate transcription in MIN6 and 879 SNP alleles that modulate MPRA activity. Multiple T2D-associated SNPs alter the activity of short interspersed nuclear element (SINE)-containing elements that are strongly induced by ER stress. We identify 220 functional variants at 104 T2D association signals, narrowing 54 signals to a single candidate SNP. Together, this study identifies elements driving ß cell steady state and ER stress-responsive transcriptional activation, nominates causal T2D SNPs, and uncovers potential roles for repetitive elements in ß cell transcriptional stress response and T2D genetics.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estresse do Retículo Endoplasmático/genética , Células Secretoras de Insulina/patologia , Polimorfismo de Nucleotídeo Único , Ativação Transcricional/genética , Alelos , Animais , Linhagem Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Locos de Características Quantitativas , Elementos Nucleotídeos Curtos e Dispersos/genética
13.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534445

RESUMO

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genética
15.
Nat Genet ; 53(8): 1166-1176, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326544

RESUMO

Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR-FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.


Assuntos
Hibridização in Situ Fluorescente/métodos , Sequências Reguladoras de Ácido Nucleico , Proteínas Adaptadoras de Transdução de Sinal/genética , Teorema de Bayes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dessaturase de Ácido Graxo Delta-5 , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Ácidos Graxos Dessaturases/genética , Citometria de Fluxo , Fator de Transcrição GATA1/genética , Humanos , Células K562 , Proteínas com Domínio LIM/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos
16.
Nature ; 593(7858): 238-243, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828297

RESUMO

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.


Assuntos
Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Variação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Linhagem Celular , Cromossomos Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Mitocôndrias/metabolismo , Especificidade de Órgãos/genética , Fenótipo
17.
Nat Genet ; 53(2): 195-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462486

RESUMO

Admixed populations are routinely excluded from genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulated and empirical two-way admixed African-European cohorts. Tractor generates accurate ancestry-specific effect-size estimates and P values, can boost genome-wide association study (GWAS) power and improves the resolution of association signals. Using a local ancestry-aware regression model, we replicate known hits for blood lipids, discover novel hits missed by standard GWAS and localize signals closer to putative causal variants.


Assuntos
Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Modelos Genéticos , Software , População Branca/genética , Colesterol/sangue , Colesterol/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Haplótipos/genética , Proteínas de Homeodomínio/genética , Humanos , Lipídeos/sangue , Linhagem , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
18.
Nat Commun ; 11(1): 1237, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144282

RESUMO

Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants.


Assuntos
Doenças Autoimunes/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , Variação Genética/imunologia , Haplótipos/genética , Haplótipos/imunologia , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/imunologia , Estudo de Prova de Conceito
19.
Nat Genet ; 52(2): 138-145, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959994

RESUMO

Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and ß-thalassemia1. BCL11A represses the genes encoding HbF and regulates human hemoglobin switching through variation in its expression during development2-7. However, the mechanisms underlying the developmental expression of BCL11A remain mysterious. Here we show that BCL11A is regulated at the level of messenger RNA (mRNA) translation during human hematopoietic development. Despite decreased BCL11A protein synthesis earlier in development, BCL11A mRNA continues to be associated with ribosomes. Through unbiased genomic and proteomic analyses, we demonstrate that the RNA-binding protein LIN28B, which is developmentally expressed in a pattern reciprocal to that of BCL11A, directly interacts with ribosomes and BCL11A mRNA. Furthermore, we show that BCL11A mRNA translation is suppressed by LIN28B through direct interactions, independently of its role in regulating let-7 microRNAs, and that BCL11A is the major target of LIN28B-mediated HbF induction. Our results reveal a previously unappreciated mechanism underlying human hemoglobin switching that illuminates new therapeutic opportunities.


Assuntos
Hemoglobinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Adulto , Animais , Sítios de Ligação , Células Cultivadas , Células Eritroides/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica , Hemoglobinas/genética , Humanos , Recém-Nascido , MicroRNAs/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA