Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150773, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368369

RESUMO

Nanotechnology enables the manipulation of materials at the nanoscale, offering innovative solutions in various fields. Nanoparticles, with their small size and unique properties, have significant applications in the biomedical filed. The current study was designed to assess the biological applications of self-synthesized cobalt carbonate (CoCO3) nanoparticles. The crystalline structure and chemical composition of the CoCO3-NPs were confirmed by SEM, XRD, and FTIR techniques. We observed the 16.58 nm size of novelly synthesized CoCO3 NPS. The scanning electron microscope study confirmed a uniform cubic spinel structure. The biocompatibility and antimicrobial activity were checked in an invitro setup. We exposed albino mice to these synthesized NPs to study wound healing and metabolic effects. The results of biocompatibility analysis indicated hemolytic activity in a dose-dependent way, which showed no cytotoxic effect except at a higher concentration. Furthermore, the results showed enhanced wound healing processes in CoCO3-NP-treated albino mice as compared to the control group. CoCO3-NPs have considerable effect on the thyroid hormone and insulin levels in albino mice. The levels of T3, T4, and insulin were increased in a dose-dependent manner. Interactions between CoCO3-NPs and thyroxine and insulin were confirmed through molecular docking. We confirmed the antimicrobial efficiency of the nanoparticles using MIC values and zones of inhibition against Staphylococcus haemolyticus and Staphylococcus aureus. Despite their concentration-dependent biocompatibility concerns, the results are promising, as CoCO3-NPs hold potential for use in medical practice, particularly in advanced wound management and microbe inhibition.

2.
Future Med Chem ; 16(19): 2013-2023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39269160

RESUMO

Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 µM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 µM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.


[Box: see text].


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Benzoxazóis , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química
3.
Heliyon ; 10(14): e34155, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092254

RESUMO

In the present study, the frequency-dependent dielectric relaxation and electrical conduction mechanisms in sol-gel-derived Zn0.5Cd0.5Fe2O4 (ZCFO) spinel ferrite were studied in the temperature range of 343-438 K. The formation of the ZCFO spinel ferrite phase with space group Fd3m was confirmed by X-ray diffraction analysis. The dielectric relaxation and electrical conduction mechanisms were studied using complex impedance spectroscopy (CIS). In the Nyquist plots, depressed semicircles were fitted with an equivalent circuit model with configuration (RGBQGB) (RGQG), signifying the contributions from grain boundaries and grains to the charge transport mechanism in the sample. The frequency-dependent AC conductivity was found to follow Jonscher's power law, and the frequency exponent term depicted the overlapping large polaron hopping (OLPH) model as the dominant transport mechanism. The activation energies for conductivity, electric modulus and impedance were calculated to identify the nature of the charge carriers governing the relaxation and conduction mechanisms in the prepared sample. Complex modulus studies confirmed the non-Debye type of dielectric relaxation, whereas tangent loss and dielectric constant analyses confirmed the thermally activated hopping mechanism of charge carriers in Zn0.5Cd0.5Fe2O4 spinel ferrite.

4.
Heliyon ; 10(13): e34152, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071552

RESUMO

Excess soil salinity is a major stress factor that inhibits plant growth, development, and production. Among the growth stages, seed germination is particularly susceptible to salt stress. Okra, a nutraceutical vegetable, has a low germination percentage. Literature has revealed genetic diversity in okra, which can be studied to develop salt-tolerant varieties. This study examined the salt tolerance of 13 okra varieties using germination tests and then tested five varieties in pot experiments with different NaCl levels (75, 100, and 125 mM NaCl). Results showed that salt levels affected all varieties, with differential variations in stress response. Salt stress reduced agronomic, and physiochemical traits in the studied varieties. In variety "MALAV-27", the highest salt concentration significantly reduced the shoot length (68.12 %), root length (65.11 %), shoot fresh weight (78.73 %), root fresh weight (68.32 %), shoot dry weight (75.60 %), and root dry weight (75.81 %), along with different physiochemical traits. Variety "NAYAB-F1" performed the best, and maintained the highest shoot length (57.12 %), root length (58.72 %), shoot fresh weight (68.26 %), and root fresh weight (58.34 %), shoot dry weight (69.23 %), root dry weight (62.50 %), and numerous physiochemical traits such as sugar (0.74 µg/g), proline (0.51 µmol/g), and chlorophyll 'a' (7.97 mg/g), chlorophyll 'b' (9.56 mg/g). The study recommended 'NAYAB-F1', 'Arka anamika', and 'Shehzadi' as salt-tolerant varieties suitable for selection in salt-tolerant okra breeding programs.

5.
RSC Adv ; 14(19): 13605-13617, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665498

RESUMO

The structural, electronic, and magnetic properties of novel half-Heusler alloys ScXGe (X = Mn, Fe) are investigated using the first principle full potential linearized augmented plane wave approach based on density functional theory (DFT). To attain the desired outcomes, we employed the exchange-correlation frameworks, specifically the local density approximation in combination with Perdew, Burke, and Ernzerhof's generalized gradient approximation plus the Hubbard U parameter method (GGA + U) to highlight the strong exchange-correlation interaction in these alloys. The structural parameter optimizations, whether ferromagnetic (FM) or nonmagnetic (NM), reveal that all ScXGe (where X = Mn, Fe) Heusler alloys attain their lowest ground state energy during FM optimization. The examination of the electronic properties of these alloys reveals their metallic character in both the spin-up and spin-down channels. The projected densities of states indicate that bonding is achieved through the hybridization of p-d and d-d states in all of the compounds. The investigation of the magnetic properties in ScXGe (where X = Mn, Fe) compounds indicates pronounced stability in their ferromagnetic state. Notably, the Curie temperatures for ScXGe (X = Mn, Fe) are determined to be 2177.02 K and 1656.09 K, respectively. The observation of metallic behavior and the strong ferromagnetic characteristics in ScXGe (X = Mn, Fe) half-Heusler alloys underscores their potential significance in the realm of spintronic devices. Consequently, our study serves as a robust foundation for subsequent experimental validation.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38675373

RESUMO

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

8.
PLoS One ; 19(2): e0297367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394191

RESUMO

Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Simulação de Dinâmica Molecular , Mutação , Algoritmos , Canal de Sódio Disparado por Voltagem NAV1.7/genética
9.
Protoplasma ; 261(4): 783-798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38376598

RESUMO

Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis. Five genotypes of cotton (Takfa 3, Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5) were selected as plant materials, and were grown under well-watered (WW; 98 ± 2% field capacity) and water-deficit (WD; 50 ± 2% field capacity) conditions for 16 days during the flower initiation stage. Data on morpho-physio-biochemical parameters and gene expression levels for these parameters were collected, and subsequently genotypes were classified either as a drought tolerant or drought susceptible one. Upregulation of GhPRP (proline-rich protein), GhP5CS (Δ1-pyrroline-5-carboxylate synthetase), and GhP5CR (Δ1-pyrroline-5-carboxylate reductase) in relation to free proline enrichment was observed in Takfa 3 genotype under WD condition. An accumulation of free proline, total soluble sugar, and potassium in plants under WD conditions was detected, which played a key role as major osmolytes controlling cellular osmotic potential. Magnesium and calcium concentrations were also enriched in leaves under WD conditions, functioning as essential elements and regulating photosynthetic abilities. Leaf greenness, net photosynthetic rate, stomatal conductance, and transpiration rate were also declined under WD conditions, leading to growth retardation, especially aboveground traits of Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5 genotypes. An increase in leaf temperature (1.1 - 4.0 °C) and crop water stress index (CWSI > 0.75) in relation to stomatal closure and reduced transpiration rate was recorded in cotton genotypes under WD conditions compared with WW conditions. Based on the increase of free proline, soluble sugar, leaf temperature, and CWSI, as well as the decrease of aboveground growth traits and physiological attributes, five genotypes were categorized into two cluster groups: drought tolerant (Takfa 3) and drought susceptible (Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5). The identified drought-tolerant cotton genotype, namely, Takfa 3, may be grown in areas experiencing drought conditions. It is recommended to further validate the yield traits of Takfa 3 under rainfed field conditions in drought-prone environments.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Gossypium , Proteínas de Plantas , Prolina , Prolina/metabolismo , Gossypium/genética , Gossypium/fisiologia , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Resistência à Seca
10.
Isotopes Environ Health Stud ; 59(4-6): 539-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920884

RESUMO

This study assessed radon (222Rn) levels in drinking water sources in the Nizampur basin and their potential health risks for the local community. We analyzed 48 water samples on-site using RAD7. Additionally, we measured pH, temperature (T), total dissolved solids (TDS), redox potential (ORP), and electrical conductivity (EC) with a multiparameter analyzer. Results showed pH, T, TDS, ORP, and EC ranging from 7.2 to 8, 17 to 26 °C, 333 to 1130 mg/l, -56 to 284 mV, and 469 to 2370 µS/cm. 222Rn levels varied significantly (0.7-107 Bq/l, mean 23 ± 21, median = 17 Bq/l), with about 65 % exceeding the EPA's limit of 11.1 Bq/l, indicating health risks likely due to local geological conditions. The annual effective doses for ingestion (EwIng) were 0.87 ± 0.01, 0.35 ± 0.006, and 0.13 ± 0.002 µSv/a for adults, infants, and children, respectively. Exposure risk via the inhalation (EwInh) route ranged from 1.75 to 270 µSv/a, with the highest risk in infants, followed by children and adults. Inhalation was the primary exposure route for all age groups. Further, spatial distribution maps and hotspot analysis suggested that the central region characterized by high structural deformation and favorable geology for radon emanation was the area of concern in terms of health risks.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Criança , Lactente , Adulto , Humanos , Água Potável/análise , Radônio/análise , Paquistão , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos
11.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894494

RESUMO

Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 M and 4.50 ± 0.11 µM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC50 values of 0.10 ± 0.050 and 0.20 ± 0.050 µM (against AChE) and 0.20 ± 0.050 and 0.30 ± 0.050 µM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Idoso , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Qualidade de Vida , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Benzimidazóis/química , Estrutura Molecular
12.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765088

RESUMO

A series of benzimidazole-based Schiff base derivatives (1-18) were synthesized and structurally elucidated through 1H NMR, 13C NMR and HREI-MS analysis. Subsequently, these synthetic derivatives were subjected to evaluation for their inhibitory capabilities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). All these derivatives showed significant inhibition against AChE with an IC50 value in the range of 123.9 ± 10.20 to 342.60 ± 10.60 µM and BuChE in the range of 131.30 ± 9.70 to 375.80 ± 12.80 µM in comparison with standard Donepezil, which has IC50 values of 243.76 ± 5.70 µM (AChE) and 276.60 ± 6.50 µM (BuChE), respectively. Compounds 3, 5 and 9 exhibited potent inhibition against both AChE and BuChE. Molecular docking studies were used to validate and establish the structure-activity relationship of the synthesized derivatives.

13.
Microorganisms ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630520

RESUMO

Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Despite scientific advances in cariology, dental caries remains a severe global concern. The aim of this study was to determine the optimization of microbial and molecular techniques for the detection of cariogenic pathogens in dental caries patients, the prevalence of cariogenic bacteria on the basis of socioeconomic, climatological, and hygienic factors, and in vitro evaluation of the antimicrobial activity of selected synthetic antibiotics and herbal extracts. In this study, oral samples were collected from 900 patients for bacterial strain screening on a biochemical and molecular basis. Plant extracts, such as ginger, garlic, neem, tulsi, amla, and aloe vera, were used to check the antimicrobial activity against the isolated strains. Synthetic antimicrobial agents, such as penicillin, amoxicillin, erythromycin, clindamycin, metronidazole, doxycycline, ceftazidime, levofloxacin, and ciprofloxacin, were also used to access the antimicrobial activity. Among 900 patients, 63% were males and 37% were females, patients aged between 36 and 58 (45.7%) years were prone to disease, and the most common symptom was toothache (61%). For oral diseases, 21% used herbs, 36% used antibiotics, and 48% were self-medicated, owing to sweets consumption (60.66%) and fizzy drinks and fast food (51.56%). Staphylococcus mutans (29.11%) and Streptococcus sobrinus (28.11%) were found as the most abundant strains. Seven bacterial strains were successfully screened and predicted to be closely related to genera S. sobrinus, S. mutans, Actinomyces naeslundii, Lactobacillus acidophilus, Eubacterium nodatum, Propionibacterium acidifaciens, and Treponema Pallidum. Among plant extracts, the maximum zone of inhibition was recorded by ginger (22.36 mm) and amla (20.01 mm), while among synthetic antibiotics, ciprofloxacin and levofloxacin were most effective against all microbes. This study concluded that phyto extracts of ginger and amla were considered suitable alternatives to synthetic antibiotics to treat dental diseases.

14.
J Imaging ; 9(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37504807

RESUMO

Vision-based human activity recognition (HAR) has emerged as one of the essential research areas in video analytics. Over the last decade, numerous advanced deep learning algorithms have been introduced to recognize complex human actions from video streams. These deep learning algorithms have shown impressive performance for the video analytics task. However, these newly introduced methods either exclusively focus on model performance or the effectiveness of these models in terms of computational efficiency, resulting in a biased trade-off between robustness and computational efficiency in their proposed methods to deal with challenging HAR problem. To enhance both the accuracy and computational efficiency, this paper presents a computationally efficient yet generic spatial-temporal cascaded framework that exploits the deep discriminative spatial and temporal features for HAR. For efficient representation of human actions, we propose an efficient dual attentional convolutional neural network (DA-CNN) architecture that leverages a unified channel-spatial attention mechanism to extract human-centric salient features in video frames. The dual channel-spatial attention layers together with the convolutional layers learn to be more selective in the spatial receptive fields having objects within the feature maps. The extracted discriminative salient features are then forwarded to a stacked bi-directional gated recurrent unit (Bi-GRU) for long-term temporal modeling and recognition of human actions using both forward and backward pass gradient learning. Extensive experiments are conducted on three publicly available human action datasets, where the obtained results verify the effectiveness of our proposed framework (DA-CNN+Bi-GRU) over the state-of-the-art methods in terms of model accuracy and inference runtime across each dataset. Experimental results show that the DA-CNN+Bi-GRU framework attains an improvement in execution time up to 167× in terms of frames per second as compared to most of the contemporary action-recognition methods.

15.
PLoS One ; 18(7): e0288050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471404

RESUMO

Theileria annulata (T. annulata) and Anaplasma marginale (A. marginale) are among the most extensively reported tick borne pathogens and are associated with huge economic losses worldwide. A total of 298 cattle blood samples were screened to report the presence of these two pathogens. The samples were collected from apparently healthy cattle (Achai, n = 155, Jersy, n = 88 and crossbred, n = 55) in Bajaur district of Khyber Pakhtunkhwa (KPK) during June and July of 2022. A total of 31 out of 298 cattle (10.4%) were found infected with T. annulata as PCR amplified a 156 base pair fragment from Tams-1 gene of T. annulata from their blood. While 16/298 animals (5.4%) were found infected with A. marginale as they amplified a 382 base pair fragment specific for msp5 gene of this bacterium. Three animals (1%) were found co infected. Cattle susceptibility to T. annulata infection was significantly higher than A. marginale infection (P < 0.001). Phylogenetic analysis revealed that Pakistani isolates of both detected pathogen clustered together and were closely related isolates from worldwide countries. Prevalence of T. annulata varied significantly among the sampling sites (P = 0.05) while no such association was observed for A. marginale among the tested cattle. Epidemiological data analysis revealed that none of the studied risk factors was found associated either with the prevalence of T. annulata or A. marginale (P > 0.05) among enrolled cattle. In conclusion, our study has revealed a relatively higher prevalence of T. annulata than A. marginale in cattle from the Bajaur district in KPK. This information is important for improving the productivity of the livestock sector, which is one of the main sources of income in the country. It is recommended that this data be taken into account for the development and implementation of effective tick control programs, as well as for the improvement of livestock management practices to prevent and manage TBDs in Pakistan.


Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Theileria annulata , Theileria , Theileriose , Carrapatos , Bovinos , Animais , Anaplasma marginale/genética , Theileria annulata/genética , Theileriose/epidemiologia , Paquistão/epidemiologia , Doenças dos Bovinos/microbiologia , Filogenia , Afeganistão , DNA de Protozoário/genética , Anaplasmose/microbiologia , Carrapatos/genética , Reação em Cadeia da Polimerase Multiplex
16.
Plants (Basel) ; 12(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375954

RESUMO

Ageratum conyzoides L. (Billy goat weed; Asteraceae) is an annual herbaceous plant of American origin with a pantropical distribution. The plant has unique biological attributes and a raft of miscellaneous chemical compounds that render it a pharmacologically important herb. Despite its high medicinal value, the constant spread of the weed is noticeable and alarming. In many countries, the weed has severely invaded the natural, urban, and agroecosystems, thus presenting management challenges to natural resource professionals and farmers. Its interference with agricultural crops, grassland forbs, forest ground flora, and its ability to replace native plant species are of serious concern. Therefore, it is pertinent to monitor its continuous spread, its entry into new geographic regions, the extent of its impact, and the associated evolutionary changes. While management strategies should be improvised to control its spread and reduce its adverse impacts, the possible utilization of this noxious weed for pharmacological and agronomic purposes should also be explored. The objective of this review is to provide a detailed account of the global distribution, biological activities, ecological and environmental impacts, and strategies for the management of the agro-environmental weed A. conyzoides.

17.
Front Chem ; 11: 1125915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214481

RESUMO

The clinical significance of benzimidazole-containing drugs has increased in the current study, making them more effective scaffolds. These moieties have attracted strong research interest due to their diverse biological features. To examine their various biological significances, several research synthetic methodologies have recently been established for the synthesis of benzimidazole analogs. The present study aimed to efficiently and quickly synthesize a new series of benzimidazole analogs. Numerous spectroscopic techniques, including 1H-NMR, 13C-NMR, and HREI-MS, were used to confirm the synthesized compounds. To explore the inhibitory activity of the analogs against α-amylase and α-glucosidase, all derivatives (1-17) were assessed for their biological potential. Compared to the reference drug acarbose (IC50 = 8.24 ± 0.08 µM), almost all the derivatives showed promising activity. Among the tested series, analog 2 (IC50 = 1.10 ± 0.10 & 2.10 ± 0.10 µM, respectively) displayed better inhibitory activity. Following a thorough examination of the various substitution effects on the inhibitory capacity of α-amylase and α-glucosidase, the structure-activity relationship (SAR) was determined. We looked at the potential mechanism of how active substances interact with the catalytic cavity of the targeted enzymes in response to the experimental results of the anti-glucosidase and anti-amylase. Molecular docking provided us with information on the interactions that the active substances had with the various amino acid residues of the targeted enzymes for this purpose.

18.
J Imaging ; 9(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37103233

RESUMO

Human action recognition has been actively explored over the past two decades to further advancements in video analytics domain. Numerous research studies have been conducted to investigate the complex sequential patterns of human actions in video streams. In this paper, we propose a knowledge distillation framework, which distills spatio-temporal knowledge from a large teacher model to a lightweight student model using an offline knowledge distillation technique. The proposed offline knowledge distillation framework takes two models: a large pre-trained 3DCNN (three-dimensional convolutional neural network) teacher model and a lightweight 3DCNN student model (i.e., the teacher model is pre-trained on the same dataset on which the student model is to be trained on). During offline knowledge distillation training, the distillation algorithm trains only the student model to help enable the student model to achieve the same level of prediction accuracy as the teacher model. To evaluate the performance of the proposed method, we conduct extensive experiments on four benchmark human action datasets. The obtained quantitative results verify the efficiency and robustness of the proposed method over the state-of-the-art human action recognition methods by obtaining up to 35% improvement in accuracy over existing methods. Furthermore, we evaluate the inference time of the proposed method and compare the obtained results with the inference time of the state-of-the-art methods. Experimental results reveal that the proposed method attains an improvement of up to 50× in terms of frames per seconds (FPS) over the state-of-the-art methods. The short inference time and high accuracy make our proposed framework suitable for human activity recognition in real-time applications.

19.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677616

RESUMO

Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.


Assuntos
Doença de Alzheimer , Humanos , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Estrutura Molecular
20.
Artigo em Inglês | LILACS, CUMED | ID: biblio-1442249

RESUMO

The coronavirus disease-19 pandemic with the characteristics of asymptomatic condition, long incubation period and poor treatment has influenced the entire globe. Coronaviruses are important emergent pathogens, specifically, the recently emerged sever acute respiratory syndrome coronavirus 2, the causative virus of the current COVID-19 pandemic. To mitigate the virus and curtail the infection risk, vaccines are the most hopeful solution. The protein structure and genome sequence of SARS-CoV-2 were processed and provided in record time; providing feasibility to the development of COVID-19 vaccines. In an unprecedented scientific and technological effort, vaccines against SARS-CoV-2 have been developed in less than one year. This review addresses the approaches adopted for SARS-CoV-2 vaccine development and the effectiveness of the currently approved vaccines(AU)


La pandemia de COVID-19, con sus características de condición asintomática, largo periodo de incubación y escaso tratamiento, ha tenido un impacto global. Los coronavirus son importantes patógenos emergentes, específicamente, el coronavirus del síndrome respiratorio agudo severo 2 descubierto recientemente, virus causal de la actual pandemia de COVID-19. Para mitigar el virus y reducir el riesgo de infección, las vacunas son la solución más esperanzadora. La estructura de la proteína y la secuencia del genoma del SARS-CoV-2 se procesaron y proporcionaron en un tiempo récord, lo que ha permitido el desarrollo de las vacunas contra el COVID-19. En un esfuerzo científico y tecnológico sin precedentes, se han desarrollado vacunas contra el SARS-CoV-2 en menos de un año. Esta revisión aborda los enfoques adoptados para el desarrollo de la vacuna contra el SARS-CoV-2 y la eficacia de las vacunas actualmente aprobadas(AU)


Assuntos
Humanos , Vacinas contra COVID-19/uso terapêutico , COVID-19/transmissão , COVID-19/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA