Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513609

RESUMO

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

2.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38217871

RESUMO

PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.


Assuntos
Infertilidade , Animais , Humanos , Masculino , Camundongos , Éxons , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Infertilidade/genética , Camundongos Endogâmicos C57BL , Fenótipo , Zinco
3.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952198

RESUMO

SUMMARY: For model species, single-cell RNA-based cell atlases are available. A good cell atlas includes all major stages in a species' ontogeny, and soon, they will be standard even for nonmodel species. Here, we propose a Python package called oggmap, which allows for the easy extraction of an orthomap (gene ages per orthogroup) for any given query species from OrthoFinder and other gene family data resources, like homologous groups from eggNOG or PLAZA. oggmap provides extracted gene ages for more than thousand eukaryotic species which can be further used to calculate gene age-weighted expression data from scRNA sequencing objects using the Python Scanpy toolkit. Not limited to one transcriptome evolutionary index, oggmap can visualize the individual gene category (e.g. age class, nucleotide diversity bin) and their corresponding expression profiles to investigate scRNA-based cell type assignments in an evolutionary context. AVAILABILITY AND IMPLEMENTATION: oggmap source code is available at https://github.com/kullrich/oggmap, documentation is available at https://oggmap.readthedocs.io/en/latest/. oggmap can be installed via PyPi or directly used via a docker container.


Assuntos
Documentação , Software
5.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562403

RESUMO

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Assuntos
Briófitas , Mudança Climática , Ecossistema , Aclimatação , Adaptação Fisiológica , Tibet , Briófitas/fisiologia
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539202

RESUMO

SUMMARY: Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate. AVAILABILITY AND IMPLEMENTATION: syntenet is available on Bioconductor (https://bioconductor.org/packages/syntenet), and the source code is available on a GitHub repository (https://github.com/almeidasilvaf/syntenet). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Sintenia , Filogenia
7.
BMC Genomics ; 23(1): 212, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296233

RESUMO

BACKGROUND: PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types - that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. RESULTS: Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales - shared across North Atlantic and North Pacific minke whale subspecies boundaries. CONCLUSION: The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility.


Assuntos
Baleia Anã , Alelos , Animais , Histona-Lisina N-Metiltransferase/genética , Meiose , Baleia Anã/genética , Dedos de Zinco/genética
9.
Sci Rep ; 11(1): 15548, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330944

RESUMO

Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.


Assuntos
Citocinas/genética , Lectinas/genética , Animais , Evolução Molecular , Proteínas Ligadas por GPI/genética , Humanos , Laboratórios , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Mensageiro/genética
10.
Plant Reprod ; 34(2): 149-173, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839924

RESUMO

KEY MESSAGE: Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.


Assuntos
Embriófitas , Células Germinativas Vegetais , Evolução Biológica , Epigênese Genética , Reprodução/genética
11.
PLoS Comput Biol ; 16(11): e1008354, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180766

RESUMO

Systematic knockout studies in mice have shown that a large fraction of the gene replacements show no lethal or other overt phenotypes. This has led to the development of more refined analysis schemes, including physiological, behavioral, developmental and cytological tests. However, transcriptomic analyses have not yet been systematically evaluated for non-lethal knockouts. We conducted a power analysis to determine the experimental conditions under which even small changes in transcript levels can be reliably traced. We have applied this to two gene disruption lines of genes for which no function was known so far. Dedicated phenotyping tests informed by the tissues and stages of highest expression of the two genes show small effects on the tested phenotypes. For the transcriptome analysis of these stages and tissues, we used a prior power analysis to determine the number of biological replicates and the sequencing depth. We find that under these conditions, the knockouts have a significant impact on the transcriptional networks, with thousands of genes showing small transcriptional changes. GO analysis suggests that A930004D18Rik is involved in developmental processes through contributing to protein complexes, and A830005F24Rik in extracellular matrix functions. Subsampling analysis of the data reveals that the increase in the number of biological replicates was more important that increasing the sequencing depth to arrive at these results. Hence, our proof-of-principle experiment suggests that transcriptomic analysis is indeed an option to study gene functions of genes with weak or no traceable phenotypic effects and it provides the boundary conditions under which this is possible.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Estudos de Associação Genética/métodos , Animais , Comportamento Animal , Biologia Computacional , Extremidades/anatomia & histologia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Estudos de Associação Genética/estatística & dados numéricos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fenótipo , Estudo de Prova de Conceito , RNA-Seq/estatística & dados numéricos , Transcriptoma
12.
BMC Evol Biol ; 20(1): 56, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414322

RESUMO

BACKGROUND: Amylase gene clusters have been implicated in adaptive copy number changes in response to the amount of starch in the diet of humans and mammals. However, this interpretation has been questioned for humans and for mammals there is a paucity of information from natural populations. RESULTS: Using optical mapping and genome read information, we show here that the amylase cluster in natural house mouse populations is indeed copy-number variable for Amy2b paralogous gene copies (called Amy2a1 - Amy2a5), but a direct connection to starch diet is not evident. However, we find that the amylase cluster was subject to introgression of haplotypes between Mus musculus sub-species. A very recent introgression can be traced in the Western European populations and this leads also to the rescue of an Amy2b pseudogene. Some populations and inbred lines derived from the Western house mouse (Mus musculus domesticus) harbor a copy of the pancreatic amylase (Amy2b) with a stop codon in the first exon, making it non-functional. But populations in France harbor a haplotype introgressed from the Eastern house mouse (M. m. musculus) with an intact reading frame. Detailed analysis of phylogenetic patterns along the amylase cluster suggest an additional history of previous introgressions. CONCLUSIONS: Our results show that the amylase gene cluster is a hotspot of introgression in the mouse genome, making it an evolutionary active region beyond the previously observed copy number changes.


Assuntos
Amilases/genética , Família Multigênica , Pseudogenes , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Genoma , Haplótipos/genética , Camundongos , Filogenia , Alinhamento de Sequência
13.
Methods Mol Biol ; 2090: 435-452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31975178

RESUMO

Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.


Assuntos
Variação Genética , Genômica/métodos , Animais , Evolução Molecular , Especiação Genética , Genética Populacional , Camundongos , Modelos Biológicos , Ratos
14.
Plant J ; 102(1): 165-177, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31714620

RESUMO

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.


Assuntos
Bryopsida/genética , Transcriptoma , Atlas como Assunto , Bryopsida/metabolismo , Conjuntos de Dados como Assunto , Expressão Gênica/genética , Genes de Plantas/genética , Internet , Micorrizas/metabolismo , Transcriptoma/genética
15.
G3 (Bethesda) ; 9(7): 2039-2049, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217262

RESUMO

Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.


Assuntos
Abies/genética , Genoma de Planta , Genômica , Biologia Computacional/métodos , Bases de Dados Genéticas , Tamanho do Genoma , Genoma de Cloroplastos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
16.
J Exp Bot ; 70(12): 3313-3328, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949700

RESUMO

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.


Assuntos
Brassicaceae/fisiologia , Expressão Gênica/efeitos da radiação , Genes de Plantas , Germinação/efeitos da radiação , Luz Solar , Ácido Abscísico/metabolismo , Brassicaceae/efeitos da radiação , Giberelinas/metabolismo , Transcriptoma/efeitos dos fármacos
17.
BMC Genomics ; 20(1): 95, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700268

RESUMO

BACKGROUND: RNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy - producing both a less dormant mucilaginous (M+) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs). RESULTS: A de novo transcriptome assembly was generated using sequences from M+ and NM Ae. arabicum dry seed morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict consensus of three methods (DESeq2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M+ dry seeds, whereas terms related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs amongst these GO terms included ribosomal proteins and histones (higher in M+), RNA polymerase II subunits and related transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed development and maturation such as ABI3, FUS3, LEC1 and WRI1 homologs) were put in context with Arabidopsis thaliana seed maturation and indicated that M+ seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms. CONCLUSIONS: Whilst there was only modest overlap of DEGs identified in reference-free versus -dependent approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and germination behaviour of M+ and NM seeds.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcriptoma , Perfilação da Expressão Gênica , Ontologia Genética , Genoma de Planta , Germinação , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Proteínas de Plantas/genética
18.
Ecol Evol ; 8(19): 9672-9682, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386566

RESUMO

Epigenetic mechanisms represent a possible mechanism for achieving a rapid response of long-lived trees to changing environmental conditions. However, our knowledge on plant epigenetics is largely limited to a few model species. With increasing availability of genomic resources for many tree species, it is now possible to adopt approaches from model species that permit to obtain single-base pair resolution data on methylation at a reasonable cost. Here, we used targeted bisulfite sequencing (TBS) to study methylation patterns in the conifer species Norway spruce (Picea abies). To circumvent the challenge of disentangling epigenetic and genetic differences, we focused on four clone pairs, where clone members were growing in different climatic conditions for 24 years. We targeted >26.000 genes using TBS and determined the performance and reproducibility of this approach. We characterized gene body methylation and compared methylation patterns between environments. We found highly comparable capture efficiency and coverage across libraries. Methylation levels were relatively constant across gene bodies, with 21.3 ± 0.3%, 11.0 ± 0.4% and 1.3 ± 0.2% in the CG, CHG, and CHH context, respectively. The variance in methylation profiles did not reveal consistent changes between environments, yet we could identify 334 differentially methylated positions (DMPs) between environments. This supports that changes in methylation patterns are a possible pathway for a plant to respond to environmental change. After this successful application of TBS in Norway spruce, we are confident that this approach can contribute to broaden our knowledge of methylation patterns in natural tree populations.

19.
Nat Ecol Evol ; 2(10): 1626-1632, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201962

RESUMO

A recent surge of studies have suggested that many novel genes arise de novo from previously noncoding DNA and not by duplication. However, most studies concentrated on longer evolutionary time scales and rarely considered protein structural properties. Therefore, it remains unclear how these properties are shaped by evolution, depend on genetic mechanisms and influence gene survival. Here we compare open reading frames (ORFs) from high coverage transcriptomes from mouse and another four mammals covering 160 million years of evolution. We find that novel ORFs pervasively emerge from noncoding regions but are rapidly lost again, while relatively fewer arise from the divergence of coding sequences but are retained much longer. We also find that a subset (14%) of the mouse-specific ORFs bind ribosomes and are potentially translated, showing that such ORFs can be the starting points of gene emergence. Surprisingly, disorder and other protein properties of young ORFs hardly change with gene age in short time frames. Only length and nucleotide composition change significantly. Thus, some transcribed de novo genes resemble 'frozen accidents' of randomly emerged ORFs that survived initial purging. This perspective complies with very recent studies indicating that some neutrally evolving transcripts containing random protein sequences may be translated and be viable starting points of de novo gene emergence.


Assuntos
Evolução Molecular , Mamíferos/genética , Fases de Leitura Aberta/genética , Transcriptoma/genética , Animais , Dipodomys/genética , Humanos , Camundongos/genética , Monodelphis/genética , Ratos/genética
20.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007417

RESUMO

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Assuntos
Chara/genética , Genoma de Planta , Evolução Biológica , Parede Celular/metabolismo , Chara/crescimento & desenvolvimento , Embriófitas/genética , Redes Reguladoras de Genes , Pentosiltransferases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA