Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Biomark ; 22(2): 199-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689704

RESUMO

BACKGROUND: Liposarcoma constitute about 13% of all soft tissue sarcoma and are associated with a high risk of metastases. As the preoperative differentiation between benign and malign lipomatous tumors is restricted to magnetic resonance imaging, computed tomography and biopsy, we performed a miRNA array to distinguish dedifferentiated liposarcoma patients from healthy controls and lipoma patients. METHODS: Blood samples of patients with dedifferentiated liposarcoma, healthy controls and lipoma patients were collected. Whole blood RNA was extracted and samples of patients with dedifferentiated liposarcoma (n= 6) and of healthy donors (n= 4) were analyzed using an Affymetrix GeneChip miRNA Array v. 4.0. qRT-PCR was carried out to confirm the most differentially expressed miRNA; being further analyzed in an independent cohort of healthy controls as well as in lipoma patients. RESULTS: As shown by the microarray, two miRNAs (miR-3613-3p, miR-4668-5p) were shown to be significantly upregulated (fold change: > 2.5; p< 0.05) in patients with dedifferentiated liposarcoma (n= 6) as compared to healthy controls (n= 4). miR-3613-3p was further validated by qRT-PCR to be significantly upregulated in dedifferentiated liposarcoma patients compared to an independent cohort of healthy controls (n= 3) and lipoma patients (n= 5). CONCLUSION: We identified a specific whole blood miRNA (miR-3613-3p) that may serve to distinguish between dedifferentiated liposarcoma patients and healthy controls, thus potentially serving as a specific biomarker for dedifferentiated liposarcoma.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Lipossarcoma/diagnóstico , Lipossarcoma/genética , MicroRNAs/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lipossarcoma/sangue , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Gradação de Tumores , Reprodutibilidade dos Testes
2.
BMC Cancer ; 17(1): 527, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784104

RESUMO

BACKGROUND: Microvesicles are small vesicles expressing specific antigens from their cells of origin. Elevated levels of microvesicles have been shown to be associated with coagulation disorders as well as with different types of malignancies. This study aims to evaluate a possible correlation of different microvesicle subpopulations with a positive history of venous thromboembolism (VTE) in patients with soft tissue sarcoma. METHODS: Annexin V - positive microvesicles, leukocyte (CD45-positive), platelet (CD61-positive), activated platelet (CD62P-, CD63-positive), endothelium-derived (CD62E-positive) and tissue-factor (CD142-positive) microvesicles were identified in the peripheral blood of patients with soft tissue sarcoma (n = 39) and healthy controls (n = 17) using fluorescence-activated cell sorting (FACS). RESULTS: Both the total amount of Annexin V-positive microvesicles and levels of endothelium-derived (CD62E-positive) microvesicles were shown to decrease significantly after tumor resection (n = 18, p = 0.0395 and p = 0.0109, respectively). Furthermore, the total amount of Annexin V - positive microvesicles as well as leukocyte (CD45-positive) and endothelium-derived (CD62E-positive) microvesicles were significantly higher in patients with grade 3 (G3) soft tissue sarcoma (n = 9) compared to healthy controls (n = 17) (p = 0.0304, p = 0.0254 and p = 0.0357, respectively). Moreover, patients with G3 soft tissue sarcoma (n = 9) presented higher levels of Annexin V-positive and endothelium-derived (CD62E-positive) microvesicles compared to patients with grade 2 (G2) soft tissue sarcoma (n = 8) (p = 0.0483 and p = 0.0045). Patients with grade 1 (G1) soft tissue sarcoma (n = 3) presented with significantly lower levels of platelet (CD61-positive) microvesicles than patients with G3 soft tissue sarcoma (n = 9) (p = 0.0150). In patients with a positive history of VTE (n = 11), significantly higher levels of activated platelet (CD62P- and CD63-positive) microvesicles (p = 0.0078 and p = 0.0450, respectively) were found compared to patients without a history of VTE (n = 28). CONCLUSION: We found significantly higher levels of Annexin V-positive and endothelium-derived (CD62E-positive) microvesicles to be circulating in the peripheral blood of patients with G3 soft tissue sarcoma compared to patients with G2 soft tissue sarcoma. Furthermore, we showed that high counts of activated platelet-derived microvesicles correlate with the occurrence of VTE. Thus, the detection of these microvesicles might be an interesting new tool for early diagnosis of soft tissue sarcoma patients with increased risk for VTE, possibly facilitating VTE prevention by earlier use of thromboprophylaxis.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Sarcoma/complicações , Sarcoma/metabolismo , Tromboembolia Venosa/etiologia , Adulto , Idoso , Anexina A5/metabolismo , Biomarcadores , Estudos de Casos e Controles , Citometria de Fluxo , Humanos , Leucócitos/metabolismo , Pessoa de Meia-Idade , Ativação Plaquetária , Período Pós-Operatório , Período Pré-Operatório , Risco , Sarcoma/cirurgia , Tromboembolia Venosa/sangue
3.
Stem Cells Int ; 2016: 6146047, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069481

RESUMO

Background. Synovial sarcoma is an aggressive soft-tissue malignancy. This study examines the presence of the SYT-SSX fusion transcript in synovial sarcoma microvesicles as well as its potential role as a biomarker for synovial sarcoma. Patients and Methods. Microvesicle release of synovial sarcoma cells was examined by transmission electron microscopy. RNA-content was analyzed by qPCR, nested PCR, nested qPCR, and droplet digital PCR to compare their sensitivity for detection of the SYT-SSX fusion gene transcript. Whole blood RNA, RNA of mononuclear cells, and microvesicle RNA of synovial sarcoma patients were analyzed for the presence of the fusion gene transcripts. Results. Electron microscopic analysis revealed synovial sarcoma cells releasing membrane-enclosed microvesicles. In vitro, the SYT-SSX fusion gene transcript was detected in both synovial sarcoma cells and microvesicles. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA. In contrast, the fusion gene transcript was not detected in peripheral blood cells and microvesicles of synovial sarcoma patients. Conclusion. Synovial sarcoma cells release microvesicles harboring the SYT-SSX fusion transcript. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA; however, more sensitive assays are needed to detect cancer-specific microvesicles in the peripheral blood of cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA