Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Chem Soc ; 144(13): 5673-5684, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344653

RESUMO

Cobalamin (Cbl)-dependent S-adenosyl-l-methionine (AdoMet) radical methylases are known for their use of a dual cofactor system to perform challenging radical methylation reactions at unactivated carbon and phosphorus centers. These enzymes are part of a larger subgroup of Cbl-dependent AdoMet radical enzymes that also perform difficult ring contractions and radical rearrangements. This subgroup is a largely untapped reservoir of diverse chemistry that requires steady efforts in biochemical and structural characterization to reveal its complexity. In this Perspective, we highlight the significant efforts over many years to elucidate the function, mechanism, and structure of TsrM, an unexpected nonradical methylase in this subgroup. We also discuss recent achievements in characterizing radical methylase subgroup members that exemplify how key tools in mechanistic enzymology are valuable time and again. Finally, we identify recent enzyme activity studies that have made use of bioinformatic analyses to expand our definition of the subgroup. Additional breakthroughs in radical (and nonradical) enzymatic chemistry and challenging transformations from the unexplored space of this subgroup are undoubtedly on the horizon.


Assuntos
S-Adenosilmetionina , Vitamina B 12 , Metionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/química
2.
J Biol Chem ; 297(6): 101423, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801558

RESUMO

Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) that converts pyruvate and coenzyme A into acetyl-CoA and formate in a reaction that is crucial to the primary metabolism of many anaerobic bacteria. The glycyl radical cofactor, which is posttranslationally installed by a radical S-adenosyl-L-methionine (SAM) activase, is a simple and effective catalyst, but is also susceptible to oxidative damage in microaerobic environments. Such damage occurs at the glycyl radical cofactor, resulting in cleaved PFL (cPFL). Bacteria have evolved a spare part protein termed YfiD that can be used to repair cPFL. Previously, we obtained a structure of YfiD by NMR spectroscopy and found that the N-terminus of YfiD was disordered and that the C-terminus of YfiD duplicates the structure of the C-terminus of PFL, including a ß-strand that is not removed by the oxygen-induced cleavage. We also showed that cPFL is highly susceptible to proteolysis, suggesting that YfiD rescue of cPFL competes with protein degradation. Here, we probe the mechanism by which YfiD can bind and restore activity to cPFL through enzymatic and spectroscopic studies. Our data show that the disordered N-terminal region of YfiD is important for YfiD glycyl radical installation but not for catalysis, and that the duplicate ß-strand does not need to be cleaved from cPFL for YfiD to bind. In fact, truncation of this PFL region prevents YfiD rescue. Collectively our data suggest the molecular mechanisms by which YfiD activation is precluded both when PFL is not damaged and when it is highly damaged.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Oxigênio/metabolismo , Proteólise , Acetiltransferases/química , Acetiltransferases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Oxirredução , Oxigênio/química , Conformação Proteica em Folha beta , Domínios Proteicos
3.
Methods Enzymol ; 605: 351-426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909833

RESUMO

Inorganic phosphate is essential for all life forms, yet microbes in marine environments are in near constant deprivation of this important nutrient. Organophosphonic acids can serve as an alternative source of inorganic phosphate if microbes possess the appropriate biochemical pathways that allow cleavage of the stable carbon-phosphorus bond that defines this class of molecule. One prominent source of inorganic phosphate is methylphosphonic acid, which is found as a constituent of marine-dissolved organic matter. The cycle of biosynthesis and catabolism of methylphosphonic acid by marine microbes is the likely source of supersaturating levels of methane in shallow ocean waters. This review provides an overview of the rich biochemistry that has evolved to synthesize methylphosphonic acid and catabolize this molecule into Pi and methane, with an emphasis on the reactions catalyzed by methylphosphonic acid synthase MpnS and the carbon-phosphorus lyase system. The protocols and experiments that are described for MpnS and carbon-phosphorus lyase provide a foundation for studying the structures and mechanisms of these and related enzymes.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Compostos Organofosforados/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Liases/metabolismo , Metano/metabolismo , Oceanos e Mares , Oxigenases/metabolismo , Fosfatos/metabolismo , Água do Mar/microbiologia
4.
ACS Chem Biol ; 13(3): 537-541, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29303545

RESUMO

Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.


Assuntos
Amidas/química , Antibacterianos/biossíntese , Streptomyces/metabolismo , Vias Biossintéticas , Leucina/metabolismo , Peptidil Transferases/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Especificidade por Substrato
5.
Dev Dyn ; 247(3): 542-554, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28631378

RESUMO

BACKGROUND: Although normally linked to bone and cartilage development, the Runt-related transcription factor, RUNX2, was reported in the mouse heart during development of the valves. We examined RUNX2 expression and function in the developing avian heart as it related to the epithelial-mesenchymal transition (EMT) in the atrioventricular canal. EMT can be separated into an activation stage involving hypertrophy and cell separation and an invasion stage where cells invade the extracellular matrix. The localization and activity of RUNX2 was explored in relation to these steps in the heart. As RUNX2 was also reported in cancer tissues, we examined its expression in the progression of esophageal cancer in staged tissues. RESULTS: A specific isoform, RUNX2-I, is present and required for EMT by endothelia of the atrioventricular canal. Knockdown of RUNX2-I inhibits the cell-cell separation that is characteristic of initial activation of EMT. Loss of RUNX2-I altered expression of EMT markers to a greater extent during activation than during subsequent cell invasion. Transforming growth factor beta 2 (TGFß2) mediates activation during cardiac endothelial EMT. Consistent with a role in activation, RUNX2-I is regulated by TGFß2 and its activity is independent of similarly expressed Snai2 in regulation of EMT. Examination of RUNX2 expression in esophageal cancer showed its upregulation concomitant with the development of dysplasia and continued expression in adenocarcinoma. CONCLUSIONS: These data introduce the RUNX2-I isoform as a critical early transcription factor mediating EMT in the developing heart after induction by TGFß2. Its expression in tumor tissue suggests a similar role for RUNX2 in the EMT of metastasis. Developmental Dynamics 247:542-554, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Transição Epitelial-Mesenquimal , Animais , Embrião de Galinha , Galinhas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Neoplasias/metabolismo , Isoformas de Proteínas , Ativação Transcricional , Fator de Crescimento Transformador beta
6.
Science ; 358(6368): 1336-1339, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217579

RESUMO

Methylphosphonate synthase (MPnS) produces methylphosphonate, a metabolic precursor to methane in the upper ocean. Here, we determine a 2.35-angstrom resolution structure of MPnS and discover that it has an unusual 2-histidine-1-glutamine iron-coordinating triad. We further solve the structure of a related enzyme, hydroxyethylphosphonate dioxygenase from Streptomyces albus (SaHEPD), and find that it displays the same motif. SaHEPD can be converted into an MPnS by mutation of glutamine-adjacent residues, identifying the molecular requirements for methylphosphonate synthesis. Using these sequence markers, we find numerous putative MPnSs in marine microbiomes and confirm that MPnS is present in the abundant Pelagibacter ubique. The ubiquity of MPnS-containing microbes supports the proposal that methylphosphonate is a source of methane in the upper, aerobic ocean, where phosphorus-starved microbes catabolize methylphosphonate for its phosphorus.


Assuntos
Organismos Aquáticos/enzimologia , Proteínas de Bactérias/química , Compostos Organofosforados/metabolismo , Oxigenases/química , Alphaproteobacteria/enzimologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Glutamina/química , Histidina/química , Microbiota , Oxigenases/classificação , Oxigenases/ultraestrutura , Filogenia , Streptomyces/enzimologia
7.
ACS Chem Biol ; 12(2): 456-463, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27977135

RESUMO

The broad-spectrum phosphonate antibiotic fosfomycin is currently in use for clinical treatment of infections caused by both Gram-positive and Gram-negative uropathogens. The antibiotic is biosynthesized by various streptomycetes, as well as by pseudomonads. Notably, the biosynthetic strategies used by the two genera share only two steps: the first step in which primary metabolite phosphoenolpyruvate (PEP) is converted to phosphonopyruvate (PnPy) and the terminal step in which 2-hydroxypropylphosphonate (2-HPP) is converted to fosfomycin. Otherwise, distinct enzymatic paths are employed. Here, we biochemically confirm the last two steps in the fosfomycin biosynthetic pathway of Pseudomonas syringae PB-5123, showing that Psf3 performs the reduction of 2-oxopropylphosphonate (2-OPP) to (S)-2-HPP, followed by the Psf4-catalyzed epoxidation of (S)-2-HPP to fosfomycin. Psf4 can also accept (R)-2-HPP as a substrate but instead performs an oxidation to make 2-OPP. We show that the combined activities of Psf3 and Psf4 can be used to convert racemic 2-HPP to fosfomycin in an enantioconvergent process. X-ray structures of each enzyme with bound substrates provide insights into the stereospecificity of each conversion. These studies shed light on the reaction mechanisms of the two terminal enzymes in a distinct pathway employed by pseudomonads for the production of a potent antimicrobial agent.


Assuntos
Antibacterianos/biossíntese , Enzimas/metabolismo , Fosfomicina/biossíntese , Pseudomonas syringae/metabolismo , Enzimas/química , Conformação Proteica , Pseudomonas syringae/enzimologia
8.
Curr Opin Chem Biol ; 35: 29-36, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599269

RESUMO

The breadth of unprecedented enzymatic reactions performed during the formation of microbial natural products has continued to expand as new biosynthetic gene clusters are unearthed by genome mining. Enzymes that use aminoacyl-tRNA (aa-tRNA) outside of the translation machinery have been known for decades, and accounts of their use in natural product biosynthesis are just beginning to accumulate. This review will highlight the recent discoveries and advances in our mechanistic understanding of aa-tRNA-dependent enzymes that play key roles in the biosynthesis of a growing number of microbial natural products.


Assuntos
Produtos Biológicos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Família Multigênica
9.
J Am Chem Soc ; 137(9): 3217-20, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25699631

RESUMO

2-Hydroxyethylphosphonate dioxygenase (HEPD) and methylphosphonate synthase (MPnS) are nonheme iron oxygenases that both catalyze the carbon-carbon bond cleavage of 2-hydroxyethylphosphonate but generate different products. Substrate labeling experiments led to a mechanistic hypothesis in which the fate of a common intermediate determined product identity. We report here the generation of a bifunctional mutant of HEPD (E176H) that exhibits the activity of both HEPD and MPnS. The product distribution of the mutant is sensitive to a substrate isotope effect, consistent with an isotope-sensitive branching mechanism involving a common intermediate. The X-ray structure of the mutant was determined and suggested that the introduced histidine does not coordinate the active site metal, unlike the iron-binding glutamate it replaced.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Oxigenases/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Histidina , Espectroscopia de Ressonância Magnética , Mutação , Organofosfonatos/metabolismo , Compostos Organofosforados/metabolismo , Oxigenases/química , Conformação Proteica
10.
J Org Chem ; 78(24): 12351-61, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24303945

RESUMO

We report the asymmetric synthesis of the γ-amino acid (1R,2R)-2-aminomethyl-1-cyclopentane carboxylic acid (AMCP) and an evaluation of this residue's potential to promote secondary structure in α/γ-peptides. Simulated annealing calculations using NMR-derived distance restraints obtained for α/γ-peptides in chloroform reveal that AMCP-containing oligomers are conformationally flexible. However, additional evidence suggests that an internally hydrogen-bonded helical conformation is partially populated in solution. From these data, we propose characteristic NOE patterns for the formation of the α/γ-peptide 12/10-helix and discuss the apparent conformational frustration of AMCP-containing oligomers.


Assuntos
Aminoácidos/química , Ciclopentanos/química , Peptídeos/química , Aminoácidos/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA