Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomed Res Int ; 2024: 8159893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374954

RESUMO

Cancer is frequently coupled with the disturbance of key signaling pathways. Aberrant activation of the mitogen-activated protein kinase (MAPK) signaling cascade, occurring in over 85% of cancers, is mainly caused by the genetic alterations of its main components-oncogenes EGFR and RAS, and plays a crucial role in cell fate. The importance of EGFR and RAS proteins in a variety of tumors suggests that they would be good therapeutic targets, but at present, no effective targeted therapy against these two oncogenes has been proven. Here, we show that ribonuclease from Bacillus pumilus (binase) inhibits MAPK signaling through direct interaction with EGFR and RAS proteins. This effect contributes to the antitumor potential of binase along with its enzymatic activity. Multitargeticity of binase prevents the development of drug resistance, which is considered a major obstacle to effective anticancer treatment.


Assuntos
Endorribonucleases , Neoplasias , Endorribonucleases/metabolismo , Ribonucleases/metabolismo , Proteínas ras , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163789

RESUMO

Small cationic guanyl-preferring ribonucleases (RNases) produced by the Bacillus species share a similar protein tertiary structure with a high degree of amino acid sequence conservation. However, they form dimers that differ in conformation and stability. Here, we have addressed the issues (1) whether the homologous RNases also have distinctions in catalytic activity towards different RNA substrates and interactions with the inhibitor protein barstar, and (2) whether these differences correlate with structural features of the proteins. Circular dichroism and dynamic light scattering assays revealed distinctions in the structures of homologous RNases. The activity levels of the RNases towards natural RNA substrates, as measured spectrometrically by acid-soluble hydrolysis products, were similar and decreased in the row high-polymeric RNA >>> transport RNA > double-stranded RNA. However, stopped flow kinetic studies on model RNA substrates containing the guanosine residue in a hairpin stem or a loop showed that the cleavage rates of these enzymes were different. Moreover, homologous RNases were inhibited by the barstar with diverse efficiency. Therefore, minor changes in structure elements of homologous proteins have a potential to significantly effect molecule stability and functional activities, such as catalysis or ligand binding.


Assuntos
Bacillus/enzimologia , RNA/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Bacillus/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Difusão Dinâmica da Luz , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
3.
Biomolecules ; 11(1)2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375305

RESUMO

Bacterial ribonuclease binase exhibits a cytotoxic effect on tumor cells possessing certain oncogenes. The aim of this study was to identify the structural parts of the binase molecule that exert cytotoxicity. Out of five designed peptides, the peptides representing the binase regions 21-50 and 74-94 have the highest cytotoxic potential toward human cervical HeLa and breast BT-20 and MCF-7 cancer cells. The peptides B21-50 and B74-94 were not able to enter human lung adenocarcinoma A549 cells, unlike BT-20 cells, explaining their failure to inhibit A549 cell proliferation. The peptide B74-94 shares similarities with epidermal growth factor (EGF), suggesting the peptide's specificity for EGF receptor overexpressed in BT-20 cells. Thus, the binase-derived peptides have the potential of being further developed as tumor-targeting peptides.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Ribonucleases/química , Apoptose/efeitos dos fármacos , Endorribonucleases/química , Endorribonucleases/farmacologia , Células HeLa , Humanos , Células MCF-7 , Neoplasias/genética , Peptídeos/química , Ribonucleases/farmacologia
4.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167434

RESUMO

Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.


Assuntos
Endorribonucleases/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Células A549 , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Bacillus pumilus/enzimologia , Bacillus pumilus/metabolismo , Linhagem Celular , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Nucleofosmina , Proteoma , Proteômica/métodos , Ribonucleases/metabolismo , Replicação Viral/efeitos dos fármacos
5.
Virus Res ; 286: 198086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32629086

RESUMO

Reoviruses (respiratory enteric orphan viruses) are nonenveloped viruses with segmented dsRNA genome. Viruses in the family Reoviridae are quite stable in the environment. Recently, they have been identified with various pathologies and physiologic dysfunctions in a wide range of organs and tissues, including the hepatobiliary system, the myocardium, lungs, and endocrine tissues. Although most cases of reovirus infection are mild or subclinical diseases, the prevention measures are currently needed, especially for young children suffering from dehydrating gastroenteritis. To inhibit viral replication, different RNases targeting viral RNA are proposed. Here, we first have shown that RNase from Bacillus pumilus (binase) acts as an antiviral agent at the level of the whole animal organism infected by Mammalian orthoreovirus 1 strain Lang (TL1). The results obtained on the mice model infected with 10 LD50 and 20 LD50 doses of reovirus indicate the restoration of mice physiological parameters under binase treatment at the dose of 50 µg/mouse. Thus, our research supports the relevance of binase as a promising antiviral agent that affects viral RNA.


Assuntos
Antivirais/uso terapêutico , Pulmão/efeitos dos fármacos , Orthoreovirus de Mamíferos/efeitos dos fármacos , Infecções por Reoviridae/tratamento farmacológico , Ribonucleases/uso terapêutico , Animais , Animais Recém-Nascidos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Reoviridae/virologia , Sorogrupo , Replicação Viral/efeitos dos fármacos
6.
Biomed Res Int ; 2018: 4837623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402481

RESUMO

Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.


Assuntos
Bacillus pumilus/enzimologia , Membrana Celular/enzimologia , Ribonucleases/química , Domínios Proteicos , Estrutura Secundária de Proteína , Ribonucleases/metabolismo
7.
Virol J ; 15(1): 5, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304825

RESUMO

BACKGROUND: Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS: To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS: We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION: Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.


Assuntos
Antivirais/farmacologia , Citoplasma/metabolismo , Endorribonucleases/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , RNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Antivirais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cães , Endorribonucleases/isolamento & purificação , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Proteínas Virais/genética
8.
Front Pharmacol ; 8: 631, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955235

RESUMO

Many ribonucleases (RNases) are considered as promising tools for antitumor therapy because of their selective cytotoxicity toward cancer cells. Binase, the RNase from Bacillus pumilus, triggers apoptotic response in cancer cells expressing RAS oncogene which is mutated in a large percentage of prevalent and deadly malignancies including colorectal cancer. The specific antitumor effect of binase toward RAS-transformed cells is due to its direct binding of RAS protein and inhibition of downstream signaling. However, the delivery of proteins to the intestine is complicated by their degradation in the digestive tract and subsequent loss of therapeutic activity. Therefore, the search of new systems for effective delivery of therapeutic proteins is an actual task. This study is aimed to the investigation of antitumor effect of binase immobilized on natural halloysite nanotubes (HNTs). Here, we have developed the method of binase immobilization on HNTs and optimized the conditions for the enzyme loading and release (i); we have found the non-toxic concentration of pure HNTs which allows to distinguish HNTs- and binase-induced cytotoxic effects (ii); using dark-field and fluorescent microscopy we have proved the absorption of binase-loaded HNTs on the cell surface (iii) and demonstrated that binase-halloysite nanoformulations possessed twice enhanced cytotoxicity toward tumor colon cells as compared to the cytotoxicity of binase itself (iv). The enhanced antitumor activity of biocompatible binase-HNTs complex confirms the advisability of its future development for clinical practice.

9.
Front Microbiol ; 8: 1666, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919884

RESUMO

Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.

10.
Biomed Res Int ; 2017: 5279065, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546965

RESUMO

Bacillus pumilus ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses and are characterized by high contagious nature, mutation rate, and antigen variability. We have shown that binase exerts an antiviral effect on both viruses at the same concentration, which does not alter the spectrum of A549 cellular proteins and expression of housekeeping genes. The titers of influenza A (H1N1pdm) virus and human rhinovirus serotype 1A were reduced by 40% and 65%, respectively. A preincubation of influenza virus with binase before infection significantly reduced viral titer after single-cycle replication of the virus. Using influenza A virus mini genome system we showed that binase reduced GFP reporter signaling indicating a binase action on the expression of viral mRNA. Binase reduced the level of H1N1pdm viral NP mRNA accumulation in A549 cells by 20%. Since the viral mRNA is a possible target for binase this agent could be potentially applied in the antiviral therapy against both negative- and positive-sense RNA viruses.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus de RNA/enzimologia , Ribonucleases/farmacologia , Células A549 , Antivirais/química , Bacillus/enzimologia , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus de RNA/patogenicidade , RNA Viral/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Rhinovirus/patogenicidade , Ribonucleases/genética , Replicação Viral/efeitos dos fármacos
11.
Bionanoscience ; 7(2): 294-299, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32219056

RESUMO

RNA viruses cause most of the dangerous communicable diseases. Due to their high mutation rates, RNA viruses quickly evade selective pressures and can adapt to a new host. Therefore, new antiviral approaches are urgently needed, which target more than one specific virus variant and which would optimally prevent development of viral resistance. Among the family of coronaviruses (CoV), several human pathogenic strains (HCoV) are known to cause respiratory diseases and are implied in enteric diseases. While most strains contribute to common cold-like illnesses, others lead to severe infections. One of these viruses is the newly emerged (2012), highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) of zoonotic origin. MERS-CoV causes a severe respiratory infection with a high mortality rate of 35 %. There is no specific treatment or infection prevention available. Here, we show that the bacterial ribonuclease Binase is able to inhibit the replication of MERS-CoV and of the low-pathogenic human coronavirus 229E (HCoV-229E) in cell culture. We demonstrate that at non-toxic concentrations, Binase decreased the titers of MERS-CoV and HCoV-229E. On a molecular level, Binase treatment reduced (i) the viral subgenomic RNAs and (ii) the viral nucleocapsidprotein (N) and non-structural protein 13 (nsp13) accumulation. Furthermore, we show that the quantity of the replication/transcription complexes within the infected cells is diminished. Thus, the data obtained might allow further development of new anti-coronaviral approaches affecting viral replication, independent of the specific virus strain.

12.
Biomed Res Int ; 2016: 4239375, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656652

RESUMO

The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase) and B. amyloliquefaciens (barnase). RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73%) and barnase (74%) was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91). The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization.

13.
J Gen Appl Microbiol ; 62(4): 181-8, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27373509

RESUMO

The potential of microbial ribonucleases as promising antitumor and antiviral agents, determines today's directions of their study. One direction is connected with biodiversity of RNases. We have analyzed completed and drafted Bacillus genomes deposited in GenBank for the presence of coding regions similar to the gene of an extracellular guanyl-preferring RNase of Bacillus amyloliquefaciens (barnase). Orthologues of the barnase gene were detected in 9 species out of 83. All of these belong to "B. subtilis" group within the genus. B. subtilis itself, as well as some other species within this group, lack such types of RNases. RNases similar to barnase were also found in species of "B. cereus" group as a part of plasmid-encoded S-layer toxins. It was also found that taxonomic states of culture collection strains, which were initially described based on a limited set of phenotypic characteristics, can be misleading and need to be confirmed. Using several approaches such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), sequencing of genes for 16S ribosomal RNA and RNA polymerase subunit beta followed by reconstruction of phylogenetic trees, we have re-identified two RNase-secreting Bacillus strains: B. thuringiensis B-388 which should be assigned as B. altitudinis B388 and B. intermedius 7P which should be renamed as B. pumilus 7P. Therefore, small secreted guanyl-preferring RNases are the feature of "B. subtilis" group only, which is characterized by distinctive lifestyle and adaptation strategies to environment.


Assuntos
Bacillus amyloliquefaciens/genética , Bacillus/classificação , Guanina/metabolismo , Filogenia , Ribonucleases/genética , Sequência de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Bacillus amyloliquefaciens/enzimologia , Bacillus pumilus/enzimologia , Bacillus pumilus/genética , Bacillus pumilus/isolamento & purificação , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Proteínas de Bactérias , Sequência de Bases , Classificação/métodos , DNA Bacteriano , Genoma Bacteriano , RNA Ribossômico 16S , Ribonucleases/classificação , Ribonucleases/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
FEBS Open Bio ; 6(1): 24-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27047739

RESUMO

Ribonucleases are considered as promising tools for anticancer treatment due to their selective cytotoxicity against tumor cells. We investigated a new RNase from Bacillus altitudinis termed BALNASE (B. altitudinis RNase). Balnase is a close homolog of the well-known cytotoxic binase, differing by only one amino acid residue: nonpolar hydrophobic alanine at position 106 in the balnase molecule is replaced by a polar uncharged threonine in binase. The most exciting question is how the physico-chemical properties and biological effects of RNase might be changed by A106T substitution. Here, we have developed a chromatography-based rapid and modern technique for the purification of this new RNase which allowed us to get a protein sample of high quality with specific activity of 1.2 × 10(6) units in preparative amounts, suitable for further investigation of its biological properties.

15.
Biochim Biophys Acta ; 1863(7 Pt A): 1559-67, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27066977

RESUMO

RAS proteins function as molecular switches that transmit signals from cell surface receptors into specific cellular responses via activation of defined signaling pathways (Fang, 2015). Aberrant constitutive RAS activation occurs with high incidence in different types of cancer (Bos, 1989). Thus, inhibition of RAS-mediated signaling is extremely important for therapeutic approaches against cancer. Here we showed that the ribonuclease (RNase) binase, directly interacts with endogenous KRAS. Further, molecular structure models suggested an inhibitory nature of binase-RAS interaction involving regions of RAS that are important for different aspects of its function. Consistent with these models, phosphorylation analysis of effectors of RAS-mediated signaling revealed that binase inhibits the MAPK/ERK signaling pathway. Interestingly, RAS activation assays using a non-hydrolysable GTP analog (GTPγS) demonstrated that binase interferes with the exchange of GDP by GTP. Furthermore, we showed that binase reduced the interaction of RAS with the guanine nucleotide exchange factor (GEF), SOS1. Our data support a model in which binase-KRAS interaction interferes with the function of GEFs and stabilizes the inactive GDP-bound conformation of RAS thereby inhibiting MAPK/ERK signaling. This model plausibly explains the previously reported, antitumor-effect of binase specific towards RAS-transformed cells and suggests the development of anticancer therapies based on this ribonuclease.


Assuntos
Transformação Celular Neoplásica/metabolismo , Endorribonucleases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Endorribonucleases/química , Estabilidade Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Camundongos , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção
16.
Bioinorg Chem Appl ; 2016: 4121960, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096759

RESUMO

Extracellular enzymes of intestinal microbiota are the key agents that affect functional activity of the body as they directly interact with epithelial and immune cells. Several species of the Bacillus genus, like Bacillus pumilus, a common producer of extracellular RNase binase, can populate the intestinal microbiome as a colonizing organism. Without involving metal ions as cofactors, binase depolymerizes RNA by cleaving the 3',5'-phosphodiester bond and generates 2',3'-cyclic guanosine phosphates in the first stage of a catalytic reaction. Maintained in the reaction mixture for more than one hour, such messengers can affect the human intestinal microflora and the human body. In the present study, we found that the rate of 2',3'-cGMP was growing in the presence of transition metals that stabilized the RNA structure. At the same time, transition metal ions only marginally reduced the amount of 2',3'-cGMP, blocking binase recognition sites of guanine at N7 of nucleophilic purine bases.

17.
Genome Announc ; 3(1)2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635022

RESUMO

Here, we present a draft genome sequence of Bacillus altitudinis strain B-388, including a putative plasmid. The strain was isolated from the intestine of Indian meal moth, a common pest of stored grains, and it is characterized by the production of extracellular RNase, similar to binase, which is of interest for comparative studies and biotechnology.

18.
Microbiol Res ; 170: 131-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25238955

RESUMO

Extracellular low-molecular weight guanyl-preferring ribonucleases (LMW RNases) of Bacillus sp. comprise a group of hydrolytic enzymes that share highly similar structural and catalytic characteristics with barnase, a ribonuclease from Bacillus amyloliquefaciens, and binase, a ribonuclease from Bacillus intermedius. Although the physical-chemical and catalytic properties of Bacillus guanyl-preferring ribonucleases are very similar, there is considerably more variation in the environmental conditions that lead to the induction of the genes encoding these RNases. Based on structural differences of their genes the guanyl-preferring ribonucleases have been sub-divided into binase-like and barnase-like groups. Here we show the ability of the key regulator of phosphate deficiency response, PhoP, to direct the transcription of the binase-like RNases but not barnase-like RNases. These results, together with our demonstration that binase-like RNases are induced in response to phosphate starvation, allow us to categorise this group of ribonucleases as new members of Bacillus PhoP regulon. In contrast, the barnase-like ribonucleases are relatively insensitive to the phosphate concentration and the environmental conditions that are responsible for their induction, and the regulatory elements involved, are currently unknown.


Assuntos
Bacillus/genética , Regulon/genética , Ribonuclease T1/genética , Sequência de Aminoácidos , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Motivos de Nucleotídeos , Filogenia , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease T1/química , Ribonuclease T1/classificação , Ribonuclease T1/metabolismo , Alinhamento de Sequência
19.
Genome Announc ; 2(4)2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25059870

RESUMO

Here, we present a draft genome sequence of Bacillus pumilus strain 3-19. It was derived from soil-isolated B. pumilus 7P using chemical mutagenesis and is characterized by elevated production of extracellular ribonuclease which is known to possess different biological activities with potential of applications in experimental research, medicine, and biotechnology.

20.
PLoS One ; 9(12): e115818, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551440

RESUMO

The biological effects of ribonucleases (RNases), such as the control of the blood vessels growth, the toxicity towards tumour cells and antiviral activity, require a detailed explanation. One of the most intriguing properties of RNases which can contribute to their biological effects is the ability to form dimers, which facilitates efficient RNA hydrolysis and the evasion of ribonuclease inhibitor. Dimeric forms of microbial RNase binase secreted by Bacillus pumilus (former B. intermedius) have only been found in crystals to date. Our study is the first report directly confirming the existence of binase dimers in solution and under natural conditions of enzyme biosynthesis and secretion by bacilli. Using different variants of gel electrophoresis, immunoblotting, size-exclusion chromatography and mass-spectrometry, we revealed that binase is a stable natural dimer with high catalytic activity.


Assuntos
Multimerização Proteica/fisiologia , Ribonucleases/metabolismo , Sequência de Aminoácidos , Bacillus/enzimologia , Catálise , Modelos Moleculares , Estrutura Secundária de Proteína , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA