Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068154

RESUMO

In many electronic applications, the dielectric and structural properties of reinforced composites are vital. In this research work, the influence of fiber proportion on the properties of a silica fiber/epoxy (SFE) composite was investigated. The structure, morphology, dielectric constant and loss factor, mechanical properties, and thermal stability were determined. The increase of wt.% of silica fiber (SiO2 (f)) x = 30 to 90, reduced the dielectric constant (εr) and dielectric loss (δ) of the SFE composite from their original values to 18.9% and 48.5%, lowering local charge displacement towards the applied electric field. The SFE composite showed higher mechanical properties with the increase in SiO2 (f), x = 30 to 80, the tensile strength (UTS) was raised from 91.6 MPa to 155.7 MPa, the compression strength (UCS) was increased from 261.1 MPa to 409.6 MPa and the flexural strength was enhanced from 192.3 MPa to 311.9 MPa. Upon further addition of SiO2 (f) to the composite, i.e., x = 90, the mechanical properties were reduced a little, but the dielectric properties were not changed. Increasing SiO2 (f) improved the thermal stability as weight loss was found to be 69% (x = 30) and 24% (x = 90), and average moisture absorption was found to be 1.1 to 1.8%. A silica fiber/epoxy composite, for microelectronics, can be made from a low-cost fiber, and its dielectric properties as well as its mechanical and thermal stability can be tuned or improved by varying fiber fractions.

2.
Micromachines (Basel) ; 14(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37630069

RESUMO

The zeolitic imidazolate framework-67 (ZIF-67) adsorbent and its composites are known to effectively remove organic dyes from aqueous environments. Here, we report a unique crystalline MoS2@ZIF-67 nanocomposite adsorbent for the efficient removal of methyl orange (MO) dye from an aqueous medium. In situ synthetic techniques were used to fabricate a well-crystalline MoS2@ZIF-67 nanocomposite, which was then discovered to be a superior adsorbent to its constituents. The successful synthesis of the nanocomposite was confirmed using XRD, EDX, FTIR, and SEM. The MoS2@ZIF-67 nanocomposite exhibited faster adsorption kinetics and higher dye removal efficiency compared with its constituents. The adsorption kinetic data matched well with the pseudo-second-order model, which signifies that the MO adsorption on the nanocomposite is a chemically driven process. The Langmuir model successfully illustrated the MO dye adsorption on the nanocomposite through comparing the real data with adsorption isotherm models. However, it appears that the Freundlich adsorption isotherm model was also in competition with the Langmuir model. According to the acquired thermodynamics parameters, the adsorption of MO on the MoS2@ZIF-67 nanocomposite surface was determined to be spontaneous and exothermic. The findings of this research open an avenue for using the MoS2@ZIF-67 nanocomposite to efficiently remove organic dyes from wastewater efflux.

3.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902904

RESUMO

For curing of fiber-reinforced epoxy composites, an alternative to thermal heating is the use of microwave energy, which cures quickly and consumes less energy. Employing thermal curing (TC) and microwave (MC) curing methods, we present a comparative study on the functional characteristics of fiber-reinforced composite for microelectronics. The composite prepregs, prepared from commercial silica fiber fabric/epoxy resin, were separately cured via thermal and microwave energy under curing conditions (temperature/time). The dielectric, structural, morphological, thermal, and mechanical properties of composite materials were investigated. Microwave cured composite showed a 1% lower dielectric constant, 21.5% lower dielectric loss factor, and 2.6% lower weight loss, than thermally cured one. Furthermore, the dynamic mechanical analysis (DMA) revealed a 20% increase in the storage and loss modulus along with a 15.5% increase in the glass transition temperature (Tg) of microwave-cured compared to thermally cured composite. The fourier transformation infrared spectroscopy (FTIR) showed similar spectra of both the composites; however, the microwave-cured composite exhibited higher tensile (15.4%), and compression strength (4.3%) than the thermally cured composite. These results illustrate that microwave-cured silica-fiber-reinforced composite exhibit superior electrical performance, thermal stability, and mechanical properties compared to thermally cured silica fiber/epoxy composite in a shorter time and the expense of less energy.

4.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890744

RESUMO

In this research, the synergistic behavior of magnetorheological elastomers containing nickel and cobalt along with iron particles as magnetically polarizable fillers is examined experimentally under dynamic shear loading. Two different types of magnetorheological elastomer were fabricated having equal proportions of iron and nickel in one kind, and iron and cobalt in the other. The concentrations of magnetic particles in each type are varied from 10% to 40% and investigated for several frequencies, displacement amplitude, and magnetic field values. A test assembly with moveable permanent magnets was used to vary magnetic field density. Force displacement hysteresis loops were studied for dynamic response of magnetorheological elastomers (MREs). It was observed that MREs showed a linear behavior at low strains while nonlinearity increased with increasing strain. The percentage filler content and frequency increased the MRE stiffness whereas it decreased with displacement amplitude. The computed maximum magnetorheological (MR) effect was 55.56 percent. While MRE with iron and cobalt gave the highest effective stiffness, MRE with iron and nickel gave the highest MR effect.

5.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208025

RESUMO

High entropy alloys (HEAs) are multi-elemental alloy systems that exhibit a combination of exceptional mechanical and physical properties, and nowadays are validating their potential in the form of thermal sprayed coatings. In the present study, a novel synthesis method is presented to form high entropy alloy coatings. For this purpose, thermal sprayed coatings were deposited on Stainless Steel 316L substrates using atmospheric plasma spraying technique with subsequent annealing, at 1000 °C for 4 h, to assist alloy formation by thermal diffusion. The coatings in as-coated samples as well as in annealed forms were extensively studied by SEM for microstructure and cross-sectional analysis. Phase identification was performed by X-ray diffraction studies. The annealed coatings revealed a mixed BCC and FCC based HEA structure. Potentiodynamic corrosion behavior of SS316L sprayed as well as annealed coatings were also carried out in 3.5% NaCl solution and it was found that the HEA-based annealed coatings displayed the best corrosion resistance 0.83 (mpy), as compared to coated/non-annealed and SS 316 L that showed corrosion resistance of 7.60 (mpy) and 3.04 (mpy), respectively.

6.
Environ Res ; 205: 112402, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838569

RESUMO

The emerging growth of the electronic devices applications has arisen the serious problems of electromagnetic (EM) wave pollution which resulting in equipment malfunction. Therefore, polymer-based composites have been considered good candidates for better EMI shielding due to their significant characteristics including, higher flexibility, ultrathin, lightweight, superior conductivity, easy fabrication processing, environmentally friendly, corrosion resistive, better adhesion with physical, chemical and thermal stability. This review article focused on the concept of the EMI shielding mechanism and challenges with the fabrication of polymer-based composites. Subsequently, recent advancements in the polymer composites applications have been critically reviewed. In addition, the impact of polymers and polymer nanocomposites with different fillers such as organic, inorganic, 2D, 3D, mixture and hybrid nano-fillers on EMI shielding effectiveness has been explored. Lastly, future research directions have been proposed to overcome the limitations of current technologies for further advancement in EMI shielding materials for industrial applications. Based on reported literature, it has been found that the low thickness based lightweight polymer is considered as a best material for excellent material for next-generation electronic devices. Optimization of polymer composites during the fabrication is required for better EMI shielding. New nano-fillers such as functionalization and composite polymers are best to enhance the EMI shielding and conductive properties.

7.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348727

RESUMO

Magnetorheological elastomers (MREs) are magneto-sensitive smart materials, widely used in various applications, i.e., construction, automotive, electrics, electronics, medical, minimally invasive surgery, and robotics. Such a wide field of applications is due to their superior properties, including morphological, dynamic mechanical, magnetorheological, thermal, friction and wear, and complex torsional properties. The objective of this review is to provide a comprehensive review of the recent progress in isotropic MREs, with the main focus on their properties. We first present the background and introduction of the isotropic MREs. Then, the preparation of filler particles, fabrication methods of isotropic MREs, and key parameters of the fabrication process-including types of polymer matrices and filler particles, filler particles size and volume fraction, additives, curing time/temperature, and magnetic field strength-are discussed in a separate section. Additionally, the properties of various isotropic MREs, under specific magnetic field strength and tensile, compressive, or shear loading conditions, are reviewed in detail. The current review concludes with a summary of the properties of isotropic MREs, highlights unexplored research areas in isotropic MREs, and provides an outlook of the future opportunities of this innovative field.

8.
Nanomaterials (Basel) ; 10(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992628

RESUMO

Corrosion and heat treatment studies are essential to predict the performance and sustainability of the coatings in harsh environments, such as the oil and gas industries. In this study, nickel phosphorus (NiP)-titanium (Ti) nanocomposite coatings (NiP-Ti nanoparticles (TNPs)), containing various concentrations of Ti nanoparticles (TNPs) were deposited on high strength low alloy (HSLA) steel through electroless deposition processing. The concentrations of 0.25, 0.50 and 1.0 g/L TNPs were dispersed in the electroless bath, to obtain NiP-TNPs nanocomposite coatings comprising different Ti contents. Further, the effect of TNPs on the structural, mechanical, corrosion, and heat treatment performance of NiP coatings was thoroughly studied to illustrate the role of TNPs into the NiP matrix. Field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDX) results confirm the successful incorporation of TNPs into the NiP matrix. A substantial improvement in the mechanical response of the NiP matrix was noticed with an increasing amount of TNPs, which reached to its ultimate values (hardness 675 Hv, modulus of elasticity 18.26 GPa, and stiffness 9.02 kN/m) at NiP-0.5TNPs coatings composition. Likewise, the electrochemical impedance spectroscopy measurements confirmed a tremendous increase in the corrosion inhibition efficiency of the NiP coatings with an increasing amount of TNPs, reaching ~96.4% at a composition of NiP-0.5TNPs. In addition, the NiP-TNPs nanocomposite coatings also unveiled better performance after heat treatment than NiP coatings, due to the presence of TNPs into the NiP matrix and the formation of more stable (heat resistant) phases, such as Ni3P, Ni3Ti, NiO, etc., during the subsequent processing.

9.
ACS Omega ; 5(23): 13694-13702, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566834

RESUMO

To overcome the inherent weakness of polylactic acid (PLA), used as scaffolding materials, multiple samples of Mg/PLA alloy composite materials was made by plastic injection molding. To enhance the interfacial interaction with PLA, magnesium alloy was treated with microarc oxidation (MAO) at four different frequencies, resulting in an improvement in mechanical strength and toughness. The microarc oxidation films consisted mainly of a porous MgO ceramic layer on the Mg rod. Based on the phenomenon of micro-anchoring and electrostatic interaction, a change in frequency during MAO showed considerable improvements in the ductility of the composite materials. The presence of the ceramic layer enriched the interfacial bonding between the Mg rod and outer PLA cladding, resulting in the PLA-clad Mg rod showing a higher tensile strength. In vitro degradation test was carried out in Hank's solution for different time periods. Surface-treated Mg alloy-based composite samples displayed a lower degradation rate as compared to untreated Mg alloy samples. The surface-treated sample at a 800 Hz pulse frequency showed the best degradation resistance and mechanical properties after being immersed in Hank's solution as compared to other samples. Mg-reinforced PLA composite rods are promising candidates for orthopedic implants.

10.
Sci Rep ; 10(1): 4314, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152388

RESUMO

The present work studied the effect of temperature on the corrosion behavior of API X120 steel in a saline solution saturated with CO2 in absence and presence of polyethyleneimine (PEI) as an environmentally safe green inhibitor. The effect of PEI on the corrosion behavior of API X120 steel was investigated using destructive and non-destructive electrochemical techniques. The overall results revealed that PEI significantly decreases the corrosion rate of API X120 steel with inhibition efficiency of 94% at a concentration of 100 µmol L-1. The adsorption isotherm, activation energy and the thermodynamic parameters were deduced from the electrochemical results. It is revealed that the adsorption of PEI on API X120 steel surface follows Langmuir adsorption isotherm adopting a Physi-chemisorption mechanism. Finally, the samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques to elucidate the effect of aggressiveness of corrosive media on the surface morphology and the corrosion performance of API X120 steel. The surface topography result indicates that the API X120 steel interface in PEI presence is smoother than CO2 with Cl- ions or Cl- ions only. This is attributed to the compact protective film limits the aggressive ions transfer towards the metallic surface and reduces the corrosion rate. Moreover, PEI inhibition mechanism is based on its CO2 capturing ability and the PEI adsorption on the steel surface beside the siderite layer which give the PEI molecules the ability to reduce the scale formation and increase the corrosion protection due to capturing the CO2 from the brine solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA