Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19871-19885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368297

RESUMO

This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg-1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg-1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H2O2) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg-1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.


Assuntos
Inoculantes Agrícolas , Petróleo , Poluentes do Solo , Cynodon , Peróxido de Hidrogênio/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Petróleo/análise , Inoculantes Agrícolas/metabolismo , Solo , Expressão Gênica , Poluentes do Solo/análise
2.
Plants (Basel) ; 11(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145782

RESUMO

Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35-74%) and root (30-85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33-49%) and root (32-37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13-67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant's defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress.

3.
Chemosphere ; 290: 133327, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34929274

RESUMO

The present investigation was committed to examining the effect of soil spiked with diesel contamination (0, 1.5, 2.5, 3.5 g diesel kg-1 soil) on maize (Zea mays L) varieties (MMRI yellow and Pearl white) with or without bacterial consortium (Pseudomonas aeruginosa BRRI54, Acinetobacter sp. strain BRSI56, Acinetobacter sp. strain ACRH80). Seed and soil bacterial inoculation were done. The studied morphological attributes were fresh and dry weight of shoot and root of both maize varieties. The results documented that bacterial consortium caused 21%, 0.06% and 29%, 34% higher shoot and root fresh/dry weights in "Pearl white" and 14%, 15% and 32%, 22% shoot and root fresh/dry weights respectively in MMRI yellow under control conditions. The biochemical attributes of shoot and root were affected negatively by the 3.5 g diesel kg-1 soil contamination. Bacterial consortium enhanced enzymatic activity (APX, CAT, POD, SOD, GR) and non-enzymatic (AsA, GSH, Pro, α-Toco) antioxidant and reduction in oxidative stress (H2O2, MDA) under hydrocarbon stress as compared to non-inoculated ones in both root and shoot organs. Among both varieties, the highest hydrocarbon removal (75, 64, and 69%) was demonstrated by MMRI yellow with bacterial consortium as compare to Pearl white showed 73, 57, 65% hydrocarbon degradation at 1.5 2.5, 3.5 g diesel kg-1 soil contamination. Consequently, the microbe mediated biotransformation of hydrocarbons suggested that the use of PGPB would be the most beneficial selection in diesel fuel contaminated soil to overcome the abiotic stress in plants and successfully remediation of hydrocarbon in contaminated soil.


Assuntos
Poluentes do Solo , Zea mays , Biodegradação Ambiental , Hidrocarbonetos , Peróxido de Hidrogênio , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
Physiol Plant ; 173(1): 58-66, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32691441

RESUMO

Environmental contamination by hydrocarbons is a major problem, and hydrocarbon accumulation in soil poses hazardous threat to ecosystems. Phytoremediation, which involves plants, is an encouraging technique for the removal of hydrocarbons from polluted soil and water. The purpose of this investigation was to examine whether bacterial inoculation enhanced the phytoremediation of hydrocarbons in diesel-contaminated soil vegetated with maize (Zea mays L.). The two cultivars of maize, MMRI Yellow and Pearl White, were planted in diesel-polluted soil (0, 1.5, 2.5, and 3.5 g diesel kg-1 soil), and inoculated with the consortium of three alkane-degrading bacterial strains, Arthrobacter oxydans ITRH49, Pseudomonas sp. ITRI73 and Pseudomonas sp. MixRI75. Bacterial inoculation enhanced plant growth and hydrocarbon degradation. Between two cultivars, MMRI Yellow showed better growth and hydrocarbon degradation in the presence and absence of bacterial inoculation. Maximum hydrocarbon degradation (80%) was observed in the soil having minimum concentration of diesel (1.5 g kg-1 soil), and vegetated with bacterial inoculated MMRI Yellow maize cultivar. Furthermore, more bacterial colonization, and abundance and expression of the alkane hydroxylase gene (alkB) were observed in the root interior than in the rhizosphere and shoot interior of the plants. The bacteria-mediated phytoremediation of soil contaminated with hydrocarbons suggested that the collective use of plants and bacteria was the most beneficial approach for the reclamation of diesel-contaminated soil in comparison with vegetation alone.


Assuntos
Ecossistema , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Expressão Gênica , Hidrocarbonetos , Micrococcaceae , Solo
5.
Plant Physiol Biochem ; 158: 244-254, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221118

RESUMO

Crop productivity is limited by several environmental constraints. Among these, salt stress plays a key role in limiting the growth and yield production of economically important agricultural crops. However, the exogenous fertigation of vitamins and minerals could serve as a "shot-gun" approach for offsetting the deleterious effects of salts present in the rhizosphere. Therefore, an experiment was conducted to quantify the efficacy of foliar fertigation of ascorbic acid (vitamin-C) and zinc (Zn) on the physio-biochemical attributes of barley (Hordeum vulgare L. Genotype B-14011) grown in a saline environment. The salt stress resulted in a reduced biological yield associated with a decrease in chlorophyll pigment, while a significant enhancement in Na+ and Zn2+ was observed under salinity stress. Similarly, the contents of total soluble proteins, total free amino acids, lipid peroxidation, and H2O2 and the activities of antioxidative enzymes (SOD, POD, CAT, APX and proline) were significantly enhanced under salinity stress. Moreover, salinity negatively affected the yield attributes and ion uptake of plants. However, foliar fertigation with AsA +0.03% Zn enhanced vegetative growth, photosynthetic pigments, synchronized ion uptake, the synthesis of enzymatic and non-enzymatic antioxidants, and the harvest index. It is inferred from this study that among all treatments, the effect of foliar fertigation with the AsA+0.03% Zn combination not only improved the salt stress tolerance but also improved the yield attributes, which will aid in the improvement in barley seed yield and is a step to solve the problem of malnutrition through biofortification of vitamin-C and zinc.


Assuntos
Antioxidantes/fisiologia , Ácido Ascórbico/administração & dosagem , Hordeum/crescimento & desenvolvimento , Estresse Salino , Zinco/administração & dosagem , Hordeum/enzimologia , Peróxido de Hidrogênio , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA