Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Geosci ; 17(8): 747-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131449

RESUMO

Haze in Beijing is linked to atmospherically formed secondary organic aerosol, which has been shown to be particularly harmful to human health. However, the sources and formation pathways of these secondary aerosols remain largely unknown, hindering effective pollution mitigation. Here we have quantified the sources of organic aerosol via direct near-molecular observations in central Beijing. In winter, organic aerosol pollution arises mainly from fresh solid-fuel emissions and secondary organic aerosols originating from both solid-fuel combustion and aqueous processes, probably involving multiphase chemistry with aromatic compounds. The most severe haze is linked to secondary organic aerosols originating from solid-fuel combustion, transported from the Beijing-Tianjing-Hebei Plain and rural mountainous areas west of Beijing. In summer, the increased fraction of secondary organic aerosol is dominated by aromatic emissions from the Xi'an-Shanghai-Beijing region, while the contribution of biogenic emissions remains relatively small. Overall, we identify the main sources of secondary organic aerosol affecting Beijing, which clearly extend beyond the local emissions in Beijing. Our results suggest that targeting key organic precursor emission sectors regionally may be needed to effectively mitigate organic aerosol pollution.

2.
Anal Chem ; 95(30): 11456-11466, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463670

RESUMO

Wildfires can influence the earth's radiative forcing through the emission of biomass-burning aerosols. To better constrain the impacts of wildfires on climate and understand their evolution under future climate scenarios, reconstructing their chemical nature, assessing their past variability, and evaluating their influence on the atmospheric composition are essential. Ice cores are unique to perform such reconstructions representing archives not only of past biomass-burning events but also of concurrent climate and environmental changes. Here, we present a novel methodology for the quantification of five biomass-burning proxies (syringic acid, vanillic acid, vanillin, syringaldehyde, and p-hydroxybenzoic acid) and one biogenic emission proxy (pinic acid) using solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry. This method was also optimized for untargeted screening analysis to gain a broader knowledge about the chemical composition of organic aerosols in ice and snow samples. The method provides low detection limits (0.003-0.012 ng g-1), high recoveries (74 ± 10%), and excellent reproducibility, allowing the quantification of the six proxies and the identification of 313 different molecules, mainly constituted by carbon, hydrogen, and oxygen. The effectiveness of two different sample storage strategies, i.e., re-freezing of previously molten ice samples and freezing of previously loaded SPE cartridges, was also assessed, showing that the latter approach provides more reproducible results.

3.
Environ Sci Technol ; 56(11): 7017-7028, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302359

RESUMO

The molecular composition of atmospheric particulate matter (PM) in the urban environment is complex, and it remains a challenge to identify its sources and formation pathways. Here, we report the seasonal variation of the molecular composition of organic aerosols (OA), based on 172 PM2.5 filter samples collected in Beijing, China, from February 2018 to March 2019. We applied a hierarchical cluster analysis (HCA) on a large nontarget-screening data set and found a strong seasonal difference in the OA chemical composition. Molecular fingerprints of the major compound clusters exhibit a unique molecular pattern in the Van Krevelen-space. We found that summer OA in Beijing features a higher degree of oxidation and a higher proportion of organosulfates (OSs) in comparison to OA during wintertime, which exhibits a high contribution from (nitro-)aromatic compounds. OSs appeared with a high intensity in summer-haze conditions, indicating the importance of anthropogenic enhancement of secondary OA in summer Beijing. Furthermore, we quantified the contribution of the four main compound clusters to total OA using surrogate standards. With this approach, we are able to explain a small fraction of the OA (∼11-14%) monitored by the Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM). However, we observe a strong correlation between the sum of the quantified clusters and OA measured by the ToF-ACSM, indicating that the identified clusters represent the major variability of OA seasonal cycles. This study highlights the potential of using nontarget screening in combination with HCA for gaining a better understanding of the molecular composition and the origin of OA in the urban environment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
4.
Sci Total Environ ; 817: 152779, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007573

RESUMO

This study describes the chemical composition and in vitro toxicity of the organic fraction of fine particulate matter (PM2.5) at an urban background site, which receives emissions either from Frankfurt international airport or the city centre, respectively. We analysed the chemical composition of filter extracts (PM2.5) using ultrahigh-performance liquid chromatography coupled to a high-resolution mass spectrometer, followed by a non-target analysis. In parallel, we applied the bulk of the filter extracts to a Microtox and acetylcholinesterase-inhibition assay for in vitro toxicity testing. We find that both the chemical composition and toxicity depend on the prevailing wind directions, and the airport operating condition, respectively. The occurrence of the airport marker compounds tricresyl phosphate and pentaerythritol esters depends on the time of the day, reflecting the night flight ban as well as an airport strike event during November 2019. We compared the organic aerosol composition and toxicity from the airport wind-sector against the city centre wind-sector. We find that urban background aerosol shows a higher baseline toxicity and acetylcholinesterase inhibition compared to rural PM2.5 that is advected over the airport. Our results indicate that the concentration and individual composition of PM2.5 influence the toxicity. Suspected drivers of the acetylcholinesterase inhibition are i.e. organophosphorus esters like triphenyl phosphate and cresyldiphenyl phosphate, and the non-ionic surfactant 4-tert-octylphenol ethoxylate. However, further research is necessary to unambiguously identify harmful organic air pollutants and their sources and quantify concentration levels at which adverse effects in humans and the environment can occur.


Assuntos
Acetilcolinesterase , Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Material Particulado/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA