Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 191(2): 1084-1101, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508348

RESUMO

Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.


Assuntos
Sorghum , Zea mays , Zea mays/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Fatores de Transcrição/metabolismo , Sorghum/genética , Sorghum/metabolismo , Meristema/metabolismo
2.
PLoS Genet ; 16(4): e1008462, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236090

RESUMO

In flowering plants, gene expression in the haploid male gametophyte (pollen) is essential for sperm delivery and double fertilization. Pollen also undergoes dynamic epigenetic regulation of expression from transposable elements (TEs), but how this process interacts with gene expression is not clearly understood. To explore relationships among these processes, we quantified transcript levels in four male reproductive stages of maize (tassel primordia, microspores, mature pollen, and sperm cells) via RNA-seq. We found that, in contrast with vegetative cell-limited TE expression in Arabidopsis pollen, TE transcripts in maize accumulate as early as the microspore stage and are also present in sperm cells. Intriguingly, coordinate expression was observed between highly expressed protein-coding genes and their neighboring TEs, specifically in mature pollen and sperm cells. To investigate a potential relationship between elevated gene transcript level and pollen function, we measured the fitness cost (male-specific transmission defect) of GFP-tagged coding sequence insertion mutations in over 50 genes identified as highly expressed in the pollen vegetative cell, sperm cell, or seedling (as a sporophytic control). Insertions in seedling genes or sperm cell genes (with one exception) exhibited no difference from the expected 1:1 transmission ratio. In contrast, insertions in over 20% of vegetative cell genes were associated with significant reductions in fitness, showing a positive correlation of transcript level with non-Mendelian segregation when mutant. Insertions in maize gamete expressed2 (Zm gex2), the sole sperm cell gene with measured contributions to fitness, also triggered seed defects when crossed as a male, indicating a conserved role in double fertilization, given the similar phenotype previously demonstrated for the Arabidopsis ortholog GEX2. Overall, our study demonstrates a developmentally programmed and coordinated transcriptional activation of TEs and genes in pollen, and further identifies maize pollen as a model in which transcriptomic data have predictive value for quantitative phenotypes.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Aptidão Genética , Pólen/genética , Transcrição Gênica , Zea mays/genética , Linhagem da Célula , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genoma de Planta/genética , Meiose , Mutagênese Insercional , Mutação , Polinização , Reprodutibilidade dos Testes , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Regulação para Cima , Zea mays/citologia , Zea mays/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 114(41): E8656-E8664, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973898

RESUMO

Axillary branch suppression is a favorable trait bred into many domesticated crop plants including maize compared with its highly branched wild ancestor teosinte. Branch suppression in maize was achieved through selection of a gain of function allele of the teosinte branched1 (tb1) transcription factor that acts as a repressor of axillary bud growth. Previous work indicated that other loci may function epistatically with tb1 and may be responsible for some of its phenotypic effects. Here, we show that tb1 mediates axillary branch suppression through direct activation of the tassels replace upper ears1 (tru1) gene that encodes an ankyrin repeat domain protein containing a BTB/POZ motif necessary for protein-protein interactions. The expression of TRU1 and TB1 overlap in axillary buds, and TB1 binds to two locations in the tru1 gene as shown by chromatin immunoprecipitation and gel shifts. In addition, nucleotide diversity surveys indicate that tru1, like tb1, was a target of selection. In modern maize, TRU1 is highly expressed in the leaf trace vasculature of axillary internodes, while in teosinte, this expression is highly reduced or absent. This increase in TRU1 expression levels in modern maize is supported by comparisons of relative protein levels with teosinte as well as by quantitative measurements of mRNA levels. Hence, a major innovation in creating ideal maize plant architecture originated from ectopic overexpression of tru1 in axillary branches, a critical step in mediating the effects of domestication by tb1.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Repetição de Anquirina , Genética Populacional , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Seleção Genética
4.
Plant Cell ; 29(7): 1622-1641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28698237

RESUMO

Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/fisiologia , Sequência de Bases , Sequência Conservada , Estudo de Associação Genômica Ampla , Meristema/genética , Família Multigênica , Mutação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/fisiologia , Locos de Características Quantitativas , Zea mays/genética
5.
Plant Biotechnol J ; 13(7): 1002-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25644697

RESUMO

Transcription activator-like effector nuclease (TALEN) technology has been utilized widely for targeted gene mutagenesis, especially for gene inactivation, in many organisms, including agriculturally important plants such as rice, wheat, tomato and barley. This report describes application of this technology to generate heritable genome modifications in maize. TALENs were employed to generate stable, heritable mutations at the maize glossy2 (gl2) locus. Transgenic lines containing mono- or di-allelic mutations were obtained from the maize genotype Hi-II at a frequency of about 10% (nine mutated events in 91 transgenic events). In addition, three of the novel alleles were tested for function in progeny seedlings, where they were able to confer the glossy phenotype. In a majority of the events, the integrated TALEN T-DNA segregated independently from the new loss of function alleles, producing mutated null-segregant progeny in T1 generation. Our results demonstrate that TALENs are an effective tool for genome mutagenesis in maize, empowering the discovery of gene function and the development of trait improvement.


Assuntos
Zea mays/genética , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Genome Biol ; 15(7): 414, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25084966

RESUMO

BACKGROUND: Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS: We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS: This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.


Assuntos
Células Germinativas Vegetais/metabolismo , RNA Mensageiro/análise , Análise de Sequência de RNA/métodos , Zea mays/fisiologia , Elementos de DNA Transponíveis , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , RNA de Plantas/análise , Seleção Genética , Zea mays/genética
7.
Genome Res ; 24(3): 431-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307553

RESUMO

Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.


Assuntos
Inflorescência/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Inflorescência/metabolismo , Meristema/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
8.
Methods Mol Biol ; 649: 299-313, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680843

RESUMO

Advances in plant biology have been frustrated by the lack of an efficient means to create targeted mutations. Zinc finger nucleases (ZFNs) hold much promise for overcoming this limitation: they can be used to generate targeted gene knockouts through imprecise repair of broken chromosomes by non-homologous end joining (NHEJ), or they can stimulate the introduction of specific DNA sequence changes through homologous recombination. Critical to the function of ZFNs is their ability to access and cleave chromosomal target sites. Numerous factors may obscure cleavage, including packaging of DNA into chromatin, DNA methylation, or the presence of other proteins at the target site. Here we describe a transient assay that rapidly assesses ZFN function at chromosomal targets in plant cells. The assay monitors the ability of a ZFN to introduce mutations by imprecise repair through NHEJ, resulting in the loss of a restriction endonuclease recognition sequence. The requirement for the restriction endonuclease recognition sequence coincident with the ZFN spacer region has thus far not been a limiting factor in identifying ZFN target sites in genes of interest suitable for this assay.


Assuntos
Arabidopsis/metabolismo , Endonucleases/metabolismo , Genes de Plantas/genética , Plantas/metabolismo , Dedos de Zinco/genética , Arabidopsis/genética , Endonucleases/genética , Plantas/genética , Reação em Cadeia da Polimerase , Transformação Genética/genética
9.
Plant Cell ; 22(6): 1667-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20581308

RESUMO

The maize (Zea mays) transposable element Dissociation (Ds) was mobilized for large-scale genome mutagenesis and to study its endogenous biology. Starting from a single donor locus on chromosome 10, over 1500 elements were distributed throughout the genome and positioned on the maize physical map. Genetic strategies to enrich for both local and unlinked insertions were used to distribute Ds insertions. Global, regional, and local insertion site trends were examined. We show that Ds transposed to both linked and unlinked sites and displayed a nonuniform distribution on the genetic map around the donor r1-sc:m3 locus. Comparison of Ds and Mutator insertions reveals distinct target preferences, which provide functional complementarity of the two elements for gene tagging in maize. In particular, Ds displays a stronger preference for insertions within exons and introns, whereas Mutator insertions are more enriched in promoters and 5'-untranslated regions. Ds has no strong target site consensus sequence, but we identified properties of the DNA molecule inherent to its local structure that may influence Ds target site selection. We discuss the utility of Ds for forward and reverse genetics in maize and provide evidence that genes within a 2- to 3-centimorgan region flanking Ds insertions will serve as optimal targets for regional mutagenesis.


Assuntos
Elementos de DNA Transponíveis , Genoma de Planta , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Mutagênese Insercional , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 107(26): 12028-33, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20508152

RESUMO

We report here an efficient method for targeted mutagenesis of Arabidopsis genes through regulated expression of zinc finger nucleases (ZFNs)-enzymes engineered to create DNA double-strand breaks at specific target loci. ZFNs recognizing the Arabidopsis ADH1 and TT4 genes were made by Oligomerized Pool ENgineering (OPEN)-a publicly available, selection-based platform that yields high quality zinc finger arrays. The ADH1 and TT4 ZFNs were placed under control of an estrogen-inducible promoter and introduced into Arabidopsis plants by floral-dip transformation. Primary transgenic Arabidopsis seedlings induced to express the ADH1 or TT4 ZFNs exhibited somatic mutation frequencies of 7% or 16%, respectively. The induced mutations were typically insertions or deletions (1-142 bp) that were localized at the ZFN cleavage site and likely derived from imprecise repair of chromosome breaks by nonhomologous end-joining. Mutations were transmitted to the next generation for 69% of primary transgenics expressing the ADH1 ZFNs and 33% of transgenics expressing the TT4 ZFNs. Furthermore, approximately 20% of the mutant-producing plants were homozygous for mutations at ADH1 or TT4, indicating that both alleles were disrupted. ADH1 and TT4 were chosen as targets for this study because of their selectable or screenable phenotypes (adh1, allyl alcohol resistance; tt4, lack of anthocyanins in the seed coat). However, the high frequency of observed ZFN-induced mutagenesis suggests that targeted mutations can readily be recovered by simply screening progeny of primary transgenic plants by PCR and DNA sequencing. Taken together, our results suggest that it should now be possible to obtain mutations in any Arabidopsis target gene regardless of its mutant phenotype.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Desoxirribonucleases/genética , Mutagênese Sítio-Dirigida , Dedos de Zinco/genética , Álcool Desidrogenase/genética , Arabidopsis/metabolismo , Sequência de Bases , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Desoxirribonucleases/metabolismo , Marcação de Genes , Genes de Plantas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Engenharia de Proteínas , Protoplastos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 31(2): 294-301, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18657511

RESUMO

Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%-50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an "open-source" method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.


Assuntos
Endonucleases/metabolismo , Engenharia Genética/métodos , Dedos de Zinco , Sequência de Bases , Endonucleases/toxicidade , Marcação de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Conformação Proteica
12.
Plant J ; 43(6): 929-40, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16146530

RESUMO

Transcriptional gene silencing has broad applications for studying gene function in planta. In maize, a large number of genes have been identified as tassel-preferred in their expression pattern, both by traditional genetic methods and by recent high-throughput expression profiling platforms. Approaches using RNA suppression may provide a rapid alternative means to identify genes directly related to pollen development in maize. The male fertility gene Ms45 and several anther-expressed genes of unknown function were used to evaluate the efficacy of generating male-sterile plants by transcriptional gene silencing. A high frequency of male-sterile plants was obtained by constitutively expressing inverted repeats (IR) of the Ms45 promoter. These sterile plants lacked MS45 mRNA due to transcriptional inactivity of the target promoter. Moreover, fertility was restored to these promoter IR-containing plants by expressing the Ms45 coding region using heterologous promoters. Transcriptional silencing of other anther-expressed genes also significantly affected male fertility phenotypes and led to increased methylation of the target promoter DNA sequences. These studies provide evidence of disruption of gene activity in monocots by RNA interference constructs directed against either native or transformed promoter regions. This approach not only enables the correlation of monocot anther-expressed genes with functions that are important for reproduction in maize, but may also provide a tool for studying gene function and identifying regulatory components unique to transcriptional gene control.


Assuntos
Interferência de RNA , Zea mays/genética , Zea mays/metabolismo , Fertilidade/genética , Flores/anatomia & histologia , Flores/genética , Flores/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA