Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 666, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353597

RESUMO

Activation of the cholinergic anti-inflammatory pathway (CAP) via vagus nerve stimulation has been shown to improve acute kidney injury in rodent models. While alpha 7 nicotinic acetylcholine receptor (α7nAChR) positive macrophages are thought to play a crucial role in this pathway, their in vivo significance has not been fully understood. In this study, we used macrophage-specific α7nAChR-deficient mice to confirm the direct activation of α7nAChRs in macrophages. Our findings indicate that the administration of GTS-21, an α7nAChR-specific agonist, protects injured kidneys in wild-type mice but not in macrophage-specific α7nAChR-deficient mice. To investigate the signal changes or cell reconstructions induced by α7nAChR activation in splenocytes, we conducted single-cell RNA-sequencing of the spleen. Ligand-receptor analysis revealed an increase in macrophage-macrophage interactions. Using macrophage-derived cell lines, we demonstrated that GTS-21 increases cell contact, and that the contact between macrophages receiving α7nAChR signals leads to a reduction in TNF-α. Our results suggest that α7nAChR signaling increases macrophage-macrophage interactions in the spleen and has a protective effect on the kidneys.


Assuntos
Receptores Nicotínicos , Animais , Camundongos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismo , Comunicação Celular
2.
Mol Med ; 29(1): 13, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703108

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , COVID-19/complicações , Proteômica , Multiômica , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Inflamação
3.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394951

RESUMO

Systemic iron metabolism is disrupted in chronic kidney disease (CKD). However, little is known about local kidney iron homeostasis and its role in kidney fibrosis. Kidney-specific effects of iron therapy in CKD also remain elusive. Here, we elucidate the role of macrophage iron status in kidney fibrosis and demonstrate that it is a potential therapeutic target. In CKD, kidney macrophages exhibited depletion of labile iron pool (LIP) and induction of transferrin receptor 1, indicating intracellular iron deficiency. Low LIP in kidney macrophages was associated with their defective antioxidant response and proinflammatory polarization. Repletion of LIP in kidney macrophages through knockout of ferritin heavy chain (Fth1) reduced oxidative stress and mitigated fibrosis. Similar to Fth1 knockout, iron dextran therapy, through replenishing macrophage LIP, reduced oxidative stress, decreased the production of proinflammatory cytokines, and alleviated kidney fibrosis. Interestingly, iron markedly decreased TGF-ß expression and suppressed TGF-ß-driven fibrotic response of macrophages. Iron dextran therapy and FtH suppression had an additive protective effect against fibrosis. Adoptive transfer of iron-loaded macrophages alleviated kidney fibrosis, validating the protective effect of iron-replete macrophages in CKD. Thus, targeting intracellular iron deficiency of kidney macrophages in CKD can serve as a therapeutic opportunity to mitigate disease progression.


Assuntos
Deficiências de Ferro , Insuficiência Renal Crônica , Humanos , Ferro/metabolismo , Dextranos/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Macrófagos/metabolismo , Complexo Ferro-Dextran/metabolismo , Fibrose , Fator de Crescimento Transformador beta/metabolismo
4.
Front Med (Lausanne) ; 9: 993698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267620

RESUMO

Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.

5.
medRxiv ; 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35982662

RESUMO

Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. In this study, we performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). The comparison of these ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.

6.
Biochem Biophys Res Commun ; 590: 89-96, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34973535

RESUMO

Cholinergic anti-inflammatory pathway (CAP) describes a neuronal-inflammatory reflex centered on systemic cytokine regulation by α7 nicotinic acetylcholine receptor (α7nAChR) activation of spleen-residue macrophage. However, the CAP mechanism attenuating distal tissue inflammation, inducing a low level of systemic inflammation, is lesser known. In this study, we hypothesized that CAP regulates monocyte accessibility by influencing their adhesion to endothelial cells. Using RNA-seq analysis, we identified that α1,3-Fucosyltransferase 7 (FucT-VII), the enzyme required for processing selectin ligands, was significantly downregulated by α7nAChR agonist among other cell-cell adhesion genes. The α7nAChR agonist inhibited monocytic cell line U-937 binding to P-selectin and adhesion to endothelial cells. Furthermore, α7nAChR agonist selectivity was confirmed by α7nAChR knockdown assays, showing that FUT7 inhibition and adhesion attenuation by the agonist was abolished by siRNA targeting α7nAChR encoding gene. Consistently, FUT7 knockdown inhibited the adhesive properties of U-937 and prevented them to adhere to endothelial cells. Overexpression of FUT7 also abrogated the adhesion attenuation induced by GTS-21 indicating that FUT7 inhibition was sufficient for inhibiting adhesion by α7nAChR activation. Our work demonstrated that α7nAChR activation regulates monocyte adhesion to endothelial cells through FUT7 inhibition, providing a novel insight into the CAP mechanism.


Assuntos
Fucosiltransferases/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/citologia , Monócitos/citologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Compostos de Benzilideno/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fucosiltransferases/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Piridinas/farmacologia , Células U937 , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
7.
Nephron ; 146(3): 259-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34284405

RESUMO

Necroptosis is a programmed cell death that is characterized by regulated necrosis resulting in plasma membrane rupture and subsequent release of damage-associated molecular patterns (DAMPs). Receptor-interacting protein kinase 3 (RIPK3) is a key mediator of this pathway. Accumulating evidence supports a critical role of RIPK3 and the necroptosis pathway in various human diseases. In this review, we discuss recent investigations that have uncovered pathogenic roles of RIPK3 in both acute kidney injury (AKI) and kidney fibrosis. RIPK3 promotes kidney tubular injury via a mechanism involving mitochondrial dysfunction. Additionally, extracellular mitochondrial DNA, which is one of the necroptotic DAMPs, released from damaged mitochondria correlates with kidney tubular injury and represents a potential novel biomarker. RIPK3 also induces kidney fibrogenesis through AKT-dependent activation of the metabolic enzyme ATP citrate lyase. Thus, the RIPK3-mediated necroptosis pathway may serve as a promising new therapeutic target in AKI and kidney fibrosis.


Assuntos
Injúria Renal Aguda , Necroptose , Injúria Renal Aguda/patologia , Apoptose , Feminino , Fibrose , Humanos , Rim/patologia , Masculino , Necrose/patologia
8.
Am J Physiol Renal Physiol ; 321(3): F278-F292, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338030

RESUMO

The relevance of primary cilia shortening in kidney disease and its pathomechanism are largely unknown. Tubular damage in acute kidney injury (AKI) is strongly associated with mitochondrial dysfunction. Thus, we investigated the interaction between primary cilia and mitochondria in cisplatin-induced AKI mouse models. We observed that the expression of intraflagellar transport 88 (IFT88), a ciliary maintenance protein, was decreased in the renal cortex following tubular damage due to cisplatin-induced AKI. This result was consistent with the decreased IFT88 expression in cisplatin-treated RPTEC/TERT1 cells (human primary proximal tubular cells) parallel to the shortening of primary cilia, suggesting a causative link between tubular damage and IFT88-mediated cilia regulation. To address the effect of impaired primary cilia with decreased IFT88 expression on tubular function, RPTEC/TERT1 cells treated with cisplatin and knocked down for IFT88 using siRNA (IFT88-KD) were assessed for phenotypic changes and mitochondrial metabolic function. Both cisplatin and IFT88-KD caused primary cilia shortening, downregulated mitochondrial oxidative phosphorylation capacity, and had defective fatty acid oxidation and decreased ATP production. Furthermore, IFT88 overexpression enhanced mitochondrial respiration, which partially counteracted cisplatin-induced defective fatty acid oxidation. These results are indicative of the contribution of IFT88 to mitochondrial homeostasis. Our findings suggest that tubular mitochondrial dysfunction in cisplatin-induced AKI is mediated, at least in part, by a decrease in IFT88 expression with primary cilia shortening. That is, tubular mitochondrial damage followed by tubular injury in AKI may occur through alteration of IFT88 expression and subsequent ciliary shortening in tubular cells.NEW & NOTEWORTHY Here, we demonstrated organelle cross-talk between primary cilia and mitochondria of proximal tubular cells in cisplatin-induced acute kidney injury. The primary cilia-mitochondria interaction may open new avenues for the development of novel therapeutic approaches in the treatment of acute kidney injury.


Assuntos
Injúria Renal Aguda/metabolismo , Cílios/metabolismo , Cisplatino/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/genética , Apoptose/fisiologia , Cílios/genética , Cisplatino/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Supressoras de Tumor/genética
9.
J Am Soc Nephrol ; 32(7): 1599-1615, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33875568

RESUMO

BACKGROUND: The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI). METHODS: We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of ß2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling. RESULTS: In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. CONCLUSIONS: The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.

10.
Sci Rep ; 10(1): 9472, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528023

RESUMO

The efficacy of prior activation of an anti-inflammatory pathway called the cholinergic anti-inflammatory pathway (CAP) through vagus nerve stimulation (VNS) has been reported in renal ischemia-reperfusion injury models. However, there have been no reports that have demonstrated the effectiveness of VNS after injury. We investigated the renoprotective effect of VNS in a cisplatin-induced nephropathy model. C57BL/6 mice were injected with cisplatin, and VNS was conducted 24 hours later. Kidney function, histology, and a kidney injury marker (Kim-1) were evaluated 72 hours after cisplatin administration. To further explore the role of the spleen and splenic macrophages, key players in the CAP, splenectomy, and adoptive transfer of macrophages treated with the selective α7 nicotinic acetylcholine receptor agonist GTS-21 were conducted. VNS treatment significantly suppressed cisplatin-induced kidney injury. This effect was abolished by splenectomy, while adoptive transfer of GTS-21-treated macrophages improved renal outcomes. VNS also reduced the expression of cytokines and chemokines, including CCL2, which is a potent chemokine attracting monocytes/macrophages, accompanied by a decline in the number of infiltrating macrophages. Taken together, stimulation of the CAP protected the kidney even after injury in a cisplatin-induced nephropathy model. Considering the feasibility and anti-inflammatory effects of VNS, the findings suggest that VNS may be a promising therapeutic tool for acute kidney injury.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Cisplatino/farmacologia , Macrófagos/fisiologia , Nervo Vago/fisiopatologia , Injúria Renal Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Compostos de Benzilideno/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/fisiopatologia , Nervo Vago/metabolismo , Estimulação do Nervo Vago/métodos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Intern Med ; 56(24): 3405-3406, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021455
12.
Ther Apher Dial ; 21(3): 243-247, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28661097

RESUMO

Double-filtration plasmapheresis is an effective and safe treatment for pemphigus. We retrospectively evaluated the decrease in autoantibody titer and pemphigus disease area index following double-filtration plasmapheresis in five patients with moderate to severe pemphigus, who were physically and/or serologically unresponsive to 1.0 mg/kg per day of prednisolone and other supportive drugs and ointments. The percentage reduction in autoantibodies 85.6 ± 14.4% (P = 0.00014), and that in pemphigus disease area index was 75.4 ± 24.3% (P = 0.0023). No side-effects were observed. All patients exhibited clinical improvement after undergoing double-filtration plasmapheresis, and the prednisolone dose was reduced by 41 ± 8.9 mg (P = 0.0005) approximately 3 months after double-filtration plasmapheresis. To our knowledge, this is the first report evaluating the efficacy of double-filtration plasmapheresis with pemphigus disease area index, and it demonstrated that double-filtration plasmapheresis is a safe "subtracting" treatment for patients with drug-resistant pemphigus.


Assuntos
Autoanticorpos/imunologia , Pênfigo/terapia , Plasmaferese/métodos , Prednisolona/administração & dosagem , Adulto , Idoso , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Feminino , Filtração/métodos , Glucocorticoides/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Pênfigo/imunologia , Pênfigo/fisiopatologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA