Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Glia ; 72(3): 643-659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031824

RESUMO

Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.


Assuntos
Epilepsia , Estado Epiléptico , Humanos , Astrócitos , Quinases Associadas a rho , Hipocampo
2.
bioRxiv ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398055

RESUMO

The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.

3.
Neurochem Res ; 48(4): 1091-1099, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36244037

RESUMO

Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.


Assuntos
Astrócitos , Epilepsia , Humanos , Astrócitos/fisiologia , Encéfalo , Transmissão Sináptica , Ácido Glutâmico
4.
Nat Neurosci ; 25(12): 1626-1638, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443610

RESUMO

Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease.


Assuntos
Astrócitos , Neuroglia , Adulto , Humanos , Animais , Camundongos , Hipocampo , Encéfalo , Giro Denteado
5.
ACS Sens ; 6(11): 4193-4205, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34783546

RESUMO

Solute-binding proteins (SBPs) have evolved to balance the demands of ligand affinity, thermostability, and conformational change to accomplish diverse functions in small molecule transport, sensing, and chemotaxis. Although the ligand-induced conformational changes that occur in SBPs make them useful components in biosensors, they are challenging targets for protein engineering and design. Here, we have engineered a d-alanine-specific SBP into a fluorescence biosensor with specificity for the signaling molecule d-serine (D-serFS). This was achieved through binding site and remote mutations that improved affinity (KD = 6.7 ± 0.5 µM), specificity (40-fold increase vs glycine), thermostability (Tm = 79 °C), and dynamic range (∼14%). This sensor allowed measurement of physiologically relevant changes in d-serine concentration using two-photon excitation fluorescence microscopy in rat brain hippocampal slices. This work illustrates the functional trade-offs between protein dynamics, ligand affinity, and thermostability and how these must be balanced to achieve desirable activities in the engineering of complex, dynamic proteins.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Sítios de Ligação , Ligantes , Ratos , Serina
6.
Front Cell Neurosci ; 15: 669280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149361

RESUMO

The fine processes of single astrocytes can contact many thousands of synapses whose function they can modulate through bi-directional signaling. The spatial arrangement of astrocytic processes and neuronal structures is relevant for such interactions and for the support of neuronal signaling by astrocytes. At the same time, the geometry of perisynaptic astrocyte processes is variable and dynamically regulated. Studying these fine astrocyte processes represents a technical challenge, because many of them cannot be fully resolved by diffraction-limited microscopy. Therefore, we have established two indirect parameters of astrocyte morphology, which, while not fully resolving local geometry by design, provide statistical measures of astrocyte morphology: the fraction of tissue volume that astrocytes occupy and the density of resolvable astrocytic processes. Both are straightforward to obtain using widely available microscopy techniques. We here present the approach and demonstrate its robustness across various experimental conditions using mainly two-photon excitation fluorescence microscopy in acute slices and in vivo as well as modeling. Using these indirect measures allowed us to analyze the morphology of relatively large populations of astrocytes. Doing so we captured the heterogeneity of astrocytes within and between the layers of the hippocampal CA1 region and the developmental profile of astrocyte morphology. This demonstrates that volume fraction (VF) and segment density are useful parameters for describing the structure of astrocytes. They are also suitable for online monitoring of astrocyte morphology with widely available microscopy techniques.

7.
Curr Opin Neurobiol ; 53: 29-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29738998

RESUMO

This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whisker-to-barrel cortex system with its unique and clear topographic organization still offers the exceptional opportunity to study sensory processing and complex behavior.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Somatossensorial/crescimento & desenvolvimento , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais
8.
Cereb Cortex ; 28(8): 2873-2886, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106499

RESUMO

Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppressed the late evoked multiunit activity in vivo. Although Nlgn4-KO did not affect evoked EPSCs in layer 4 (L4) spiny stellate cells in acute thalamocortical slices elicited by electrical stimulation of thalamocortical inputs, it caused a lower frequency of both miniature (m) IPSCs and mEPSCs, and a decrease in the number of readily releasable vesicles at GABAergic and glutamatergic connections, weakening both excitatory and inhibitory transmission. However, Nlgn4 deficit strongly suppresses glutamatergic activity, shifting the excitation-inhibition balance to inhibition. We conclude that Nlgn4-KO does not influence the incoming whisker-mediated sensory information to the barrel cortex, but modifies intracortical information processing.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Potenciais Evocados/genética , Neocórtex/patologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Vias Aferentes/patologia , Vias Aferentes/fisiopatologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem
9.
Cereb Cortex ; 27(1): 131-145, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909001

RESUMO

Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.


Assuntos
Axônios/fisiologia , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas/fisiologia , Crescimento Neuronal/fisiologia , Fosfolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Camundongos
10.
Cell Calcium ; 60(5): 322-330, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417499

RESUMO

Myelination in the central nervous system depends on axon-oligodendrocyte precursor cell (OPC) interaction. We suggest that myelin synthesis may be influenced by [Na+]i and [Ca2+]i signaling in OPCs. Experiments were performed in mouse cultured OPCs at day in vitro (DIV) 2-6 or acute slices of the corpus callosum at postnatal days (P) 10-30. Synthesis of Myelin Basic Protein (MBP), an "executive molecule of myelin", was used as readout of myelination. Immunohistological data revealed that MBP synthesis in cultured OPCs starts around DIV4. Transient elevations of resting [Ca2+]i and [Na+]i levels were observed in the same temporal window (DIV4-5). At DIV4, but not at DIV2, both extracellular [K+] ([K+]e) elevation (+5mM) and partial Na+,K+-ATPase (NKA) inhibition elicited [Na+]i and [Ca2+]i transients. These responses were blocked with KB-R7943 (1µM), a blocker of Na+-Ca2+ exchanger (NCX), indicating an involvement of NCX which operates in reverse mode. Treatment of OPCs with culture medium containing elevated [K+] (+5mM, 24h) or ouabain (500nM, 24h) increased resting [Ca2+]i and facilitated MBP synthesis. Blockade of NCX with KB-R7943 (1µM, 12h) reduced resting [Ca2+]i and decreased MBP synthesis. Similar to the results obtained in OPC cultures, OPCs in acute callosal slices demonstrated an increase in resting [Ca2+]i and [Na+]i levels during development. NCX blockade induced [Ca2+]i and [Na+]i responses in OPCs at P20-30 but not at P10. We conclude that local [Na+]i and/or membrane potential changes can modulate Ca2+ influx through NCX and in turn MBP synthesis. Thus neuronal activity-induced changes in [K+]e may via NCX and NKA modulate myelination.


Assuntos
Cálcio/metabolismo , Proteína Básica da Mielina/biossíntese , Oligodendroglia/citologia , Transdução de Sinais , Sódio/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Íons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
Cereb Cortex ; 26(7): 3260-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980613

RESUMO

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Transmissão Sináptica/fisiologia , Tálamo/metabolismo , Vibrissas/fisiologia , Animais , Proteínas de Ligação a Calmodulina/genética , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Equilíbrio Postural/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Percepção do Tato/fisiologia , Caminhada/fisiologia
12.
EMBO Mol Med ; 8(1): 25-38, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26671989

RESUMO

Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases.


Assuntos
Lisofosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteoglicanas/genética , Transdução de Sinais/genética , Sinapses/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Eletroencefalografia , Potenciais Evocados , Glicosilação , Células HEK293 , Humanos , Transtornos Mentais/genética , Transtornos Mentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Fosfopeptídeos/análise , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Proteoglicanas/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia , Proteínas de Transporte Vesicular/metabolismo
13.
Pflugers Arch ; 467(7): 1565-1575, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163767

RESUMO

Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation.


Assuntos
Córtex Entorrinal/metabolismo , Potenciais Evocados , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Córtex Entorrinal/citologia , Córtex Entorrinal/crescimento & desenvolvimento , Córtex Entorrinal/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Eur J Neurosci ; 38(11): 3580-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118094

RESUMO

During early development, cortical neurons migrate from their places of origin to their final destinations where they differentiate and establish synaptic connections. During corticogenesis, radially migrating cells move from deeper zone to the marginal zone, but they do not invade the latter. This "stop" function of the marginal zone is mediated by a number of factors, including glutamate and γ-aminobutyric acid (GABA), two main neurotransmitters in the central nervous system. In the marginal zone, GABA has been shown to be released via GABA transporters (GAT)-2/3, whereas glutamate transporters (EAATs) operate in the uptake mode. In this study, GABAergic postsynaptic currents (GPSCs) were recorded from Cajal-Retzius cells in the marginal zone of murine neonatal neocortex using a whole-cell patch-clamp technique. Minimal electrical stimulation was applied to elicit evoked GPSCs using a paired-pulse protocol. EAAT blockade with dl-threo-b-benzyloxyaspartic acid (dl-TBOA), a specific non-transportable EAAT antagonist, abolishes constitutive GAT-2/3-mediated GABA release. In contrast to dl-TBOA, d-aspartate, an EAAT substrate, fails to block GAT-2/3-mediated GABA release. SNAP-5114, a specific GAT-2/3 antagonist, induced an elevation of intracellular sodium concentration ([Na(+) ]i ) under resting conditions and in the presence of d-aspartate, indicating that GAT-2/3 operates in reverse mode. In the presence of dl-TBOA, however, SNAP-5114 elicited a [Na(+) ]i decrease, demonstrating that GAT-2/3 operates in uptake mode. We conclude that EAATs via intracellular Na(+) signaling and/or cell depolarization can govern the strength/direction of GAT-mediated GABA transport.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Neocórtex/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Inibidores da Captação de GABA/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Sódio/metabolismo , Potenciais Sinápticos
15.
Pflugers Arch ; 464(2): 217-25, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665047

RESUMO

Cajal-Retzius (CR) cells, early generated neurons in the marginal zone of developing neocortex, are reported to be highly vulnerable to excitotoxic damage. Because extracellular glutamate concentration in the central nervous system is mainly controlled by glutamate transporters (EAATs), we studied the effects of EAAT blockade on CR cells. DL: -TBOA, a specific EAAT antagonist, induced NMDA receptor-dependent bursting discharges in layer 2/3 pyramidal neurons, indicating that EAATs operate in the uptake mode and their blockade leads to elevation of extracellular glutamate concentration. In CR cells, however, DL: -TBOA failed to change either the membrane resistance or holding current, and moreover, it reduced the frequency of spontaneous GABAergic postsynaptic currents. DL: -TBOA decreased the mean amplitude and increased paired-pulse ratio of evoked GABAergic postsynaptic currents, indicating the presynaptic locus of its action. Indeed, LY379268, a specific agonist of group II metabotropic glutamate receptors (mGluR-II), mimicked the DL: -TBOA-mediated effects, and LY341495, an unspecific mGluR antagonist, eliminated the DL: -TBOA-induced effects. As dihydrokainic acid, a specific EAAT2 blocker, failed to affect evoked GABAergic postsynaptic currents, whereas TFB-TBOA, a selective blocker of EAAT1 and EAAT2, produced effects similar to that of DL: -TBOA, extracellular glutamate concentration in the marginal zone is mainly controlled by EAAT1 (GLAST). Thus, even though CR cells are highly vulnerable to excitotoxic damage, a number of mechanisms serve to protect them against excessive extracellular glutamate concentration including a lack of functional glutamatergic synapses, Mg(2+) blockade of NMDA receptors, and presynaptic mGluRs that inhibit transmission at GABAergic synapses.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Neocórtex/citologia , Terminações Pré-Sinápticas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/agonistas , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/agonistas , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Inibição Neural , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
16.
Glia ; 60(4): 605-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22279011

RESUMO

Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (<250 ms) interstimulus intervals (ISIs) and paired-pulse depression at longer ISIs. In experiments with close to physiological, high [Na(+)]i (20 mM) intrapipette solution, PPF of STCs at short ISIs was significantly reduced. In addition, the STC kinetics was slowed in the presence of high [Na(+)]i. Exogenous GABA increased astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/fisiologia , Líquido Intracelular/metabolismo , Neocórtex/citologia , Plasticidade Neuronal/fisiologia , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Anisóis/farmacologia , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Benzofuranos/metabolismo , Biofísica , Cloreto de Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Estimulação Elétrica , Éteres Cíclicos/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Líquido Intracelular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Oximas/farmacologia , Técnicas de Patch-Clamp , Rodaminas/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
17.
Neuroreport ; 22(11): 525-9, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21666518

RESUMO

Subplate neurons and Cajal-Retzius cells play an important role in the corticogenesis. Despite morphological evidence, the question whether subplate neurons innervate Cajal-Retzius cells has not been studied yet. We report that electrical stimulation in the subplate resulted in evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in Cajal-Retzius cells. The eIPSC latency showed minor variability and amounted to approximately 4 ms, suggesting the monosynaptic connection. During the first postnatal week: (i) eIPSC amplitude increased, (ii) eIPSC kinetics sped up, (iii) the size of readily releasable pool increased, and (iv) γ-aminobutyric acid release probability decreased. We conclude that GABAergic subplate neurons innervate Cajal-Retzius cells. Surprisingly, despite the transient nature of both cell populations, these projections show developmental adjustments typical for many nontransient synaptic connections.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neurônios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Interpretação Estatística de Dados , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
18.
J Physiol ; 588(Pt 13): 2351-60, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20421290

RESUMO

GABAergic synapses on Cajal-Retzius neurons in layer I of the murine neocortex experience GABA(B) receptor (GABA(B)R)-mediated tonic inhibition. Extracellular GABA concentration ([GABA](o)) that determines the strength of GABA(B)R-mediated inhibition is controlled by GABA transporters (GATs). In this study, we hypothesized that the strength of presynaptic GABA(B)R activation reflects [GABA](o) in the vicinity of synaptic contacts. Slices obtained from two age groups were used, namely postnatal days (P)2-3 and P5-7. GABAergic postsynaptic currents (IPSCs) were recorded using the whole-cell patch-clamp technique. Minimal electrical stimulation in layer I was applied to elicit evoked IPSCs (eIPSCs) using a paired-pulse protocol. Three parameters were selected for comparison: the mean eIPSC amplitude, paired-pulse ratio, and failure rate. When GAT-1 and GAT-2/3 were blocked by NO-711 (10 microM) and SNAP-5114 (40 microM), respectively, no tonic GABA(B)R-mediated inhibition was observed. In order to restore the control levels of GABA(B)R-mediated inhibition, 250 and 125 nm exogenous GABA was required at P2-3 and P5-7, respectively. Addition of 3-mercaptopropionic acid, a glutamate decarboxylase inhibitor, did not significantly change the obtained values arguing against the suggestion that a mechanism different from GATs contributes to [GABA](o) control. We conclude that juxtasynaptic [GABA](o) is higher (about 250 nM) at P2-3 than at P5-7 (about 125 nM). As both radial cell migration and corticogenesis in general are strongly dependent on [GABA](o) and the formation of the last layer 2/3 is finished by P4 in rodents, the observed [GABA](o) reduction in layer I might reflect this crucial event in the cortical development.


Assuntos
Neocórtex/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido 3-Mercaptopropiônico/farmacologia , Animais , Anisóis/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Antagonistas GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inibidores da Captação de GABA , Antagonistas de Receptores de GABA-B , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Oximas/farmacologia , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Receptores de GABA-B/fisiologia , Ácido gama-Aminobutírico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA