Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biophys J ; 123(3): 294-306, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38115583

RESUMO

HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VßBCC, comprising CBFß and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VßBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VßBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VßBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VßBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.


Assuntos
HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Humanos , Citosina Desaminase/metabolismo , HIV-1/metabolismo , Ligação Proteica , Proteólise
2.
FEBS J ; 289(11): 3205-3216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967499

RESUMO

The third PDZ domain of the postsynaptic density protein 95 (PSD95-PDZ3; 11 kDa, 103 residues) has a propensity to form amyloid fibrils at high temperatures. At neutral pH, PDZ3 is natively folded, but it exhibits a peculiar three-state thermal unfolding with a reversible oligomerization (RO) equilibrium at high temperatures, which is uncharacteristic in the unfolding of a small globular protein as PDZ3 is. Here, we examined the RO's role in PDZ3's amyloidogenesis at high-temperature using two variants (F340A and L342A) that suppress the high-temperature RO and five single-alanine-mutated variants, where we mutated surface-exposed hydrophobic residues to alanine. Circular Dichroism (CD), Analytical Ultracentrifuge (AUC), and other spectroscopic measurements confirmed the retention of the native structure at ambient temperature. Differential Scanning Calorimetry (DSC) was used to assess the presence or absence of the high-temperature RO, and the amyloidogenicity of the variants was measured by Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM). By comparing the fraction of RO and the ThT signal, we found that mutations that suppressed the high-temperature RO strongly inhibited amyloidogenesis. On the other hand, all variants forming RO also formed amyloids under the same conditions as the wild-type PDZ3.


Assuntos
Amiloide , Mutação Puntual , Alanina , Amiloide/química , Amiloide/genética , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Proteína 4 Homóloga a Disks-Large , Dobramento de Proteína , Temperatura , Termodinâmica
3.
Biochem Biophys Res Commun ; 555: 121-127, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813270

RESUMO

The epidermal growth factor receptor extracellular domain III (EGFR-ECDIII) protein is a promising target of anti-cancer research, and its production in Escherichia coli would thus represent significant benefits. However, despite its moderate size (19 kDa), the expression of EGFR-ECDIII in E.coli is hampered by the presence of multiple cysteines producing misfolded proteins with incorrect S-S bonds. In our study, we show that a short 12-residue solubility enhancing peptide (SEP) tag containing nine arginines (C9R) attached at the C-terminus of EGFR-ECDIII reduces the inclusion body formation and increases the final yield by six times (20 mg/L). EGFR-ECDIII-C9R purified from the soluble fraction eluted as a sharp single RP-HPLC peak, suggesting a single S-S bond pairing. Biophysical characterization using circular dichroism, fluorescence, and light scattering confirmed its native-like properties together with reversible thermal denaturation. The binding activity of EGFR-ECDIII-C9R to anti-EGFR-VHH7D12, a single-domain antibody with specific binding to the ECDIII, was assessed by sandwich ELISA. Further, we produced anti-EGFR-ECDIII-C9R antisera in mouse models and anti-sera inhibited A431 cancer cells' growth. These results demonstrate that the SEP tag enables the rapid production of the multiple disulfide-bonded EGFR-ECDIII in E. coli having native-like biophysical properties and producing neutralizing antibodies.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores ErbB/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Animais , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Cromatografia de Fase Reversa , Dicroísmo Circular , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/imunologia , Escherichia coli/genética , Feminino , Humanos , Soros Imunes , Camundongos Endogâmicos ICR , Tamanho da Partícula , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Solubilidade
4.
Sci Rep ; 10(1): 20069, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208800

RESUMO

Gaussia luciferase (GLuc) is a small luciferase (18.2 kDa; 168 residues) and is thus attracting much attention as a reporter protein, but the lack of structural information is hampering further application. Here, we report the first solution structure of a fully active, recombinant GLuc determined by heteronuclear multidimensional NMR. We obtained a natively folded GLuc by bacterial expression and efficient refolding using a Solubility Enhancement Petide (SEP) tag. Almost perfect assignments of GLuc's 1H, 13C and 15N backbone signals were obtained. GLuc structure was determined using CYANA, which automatically identified over 2500 NOEs of which > 570 were long-range. GLuc is an all-alpha-helix protein made of nine helices. The region spanning residues 10-18, 36-81, 96-145 and containing eight out of the nine helices was determined with a Cα-atom RMSD of 1.39 Å ± 0.39 Å. The structure of GLuc is novel and unique. Two homologous sequential repeats form two anti-parallel bundles made by 4 helices and tied together by three disulfide bonds. The N-terminal helix 1 is grabbed by these 4 helices. Further, we found a hydrophobic cavity where several residues responsible for bioluminescence were identified in previous mutational studies, and we thus hypothesize that this is a catalytic cavity, where the hydrophobic coelenterazine binds and the bioluminescence reaction takes place.


Assuntos
Copépodes/enzimologia , Dissulfetos/química , Imidazóis/metabolismo , Luciferases/química , Luciferases/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Pirazinas/metabolismo , Sequência de Aminoácidos , Animais , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína
5.
FEBS Open Bio ; 10(10): 1947-1956, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017095

RESUMO

Poor immunogenicity of small proteins is a major hurdle in developing vaccines or producing antibodies for biopharmaceutical usage. Here, we systematically analyzed the effects of 10 solubility controlling peptide tags (SCP-tags) on the immunogenicity of a non-immunogenic model protein, bovine pancreatic trypsin inhibitor (BPTI-19A; 6 kDa). CD, fluorescence, DLS, SLS, and AUC measurements indicated that the SCP-tags did not change the secondary structure content nor the tertiary structures of the protein nor its monomeric state. ELISA results indicated that the 5-proline (C5P) and 5-arginine (C5R) tags unexpectedly increased the IgG level of BPTI-19A by 240- and 73-fold, respectively, suggesting that non-oligomerizing SCP-tags may provide a novel method for increasing the immunogenicity of a protein in a highly specific manner.


Assuntos
Imunidade Adaptativa/genética , Peptídeos/imunologia , Engenharia de Proteínas/métodos , Aprotinina/genética , Aprotinina/imunologia , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Conformação Proteica , Estrutura Secundária de Proteína/genética , Proteínas/genética , Solubilidade/efeitos dos fármacos
6.
Biophys J ; 119(7): 1391-1401, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32961107

RESUMO

Differential scanning calorimetry (DSC) indicated that PDZ3 undergoes a peculiar thermal denaturation, exhibiting two endothermic peaks because of the formation of reversible oligomers at high temperature (N↔I6↔D). This contrasts sharply with the standard two-state denaturation model observed for small, globular proteins. We performed an alanine scanning analysis by individually mutating three hydrophobic residues at the crystallographic oligomeric interface (Phe340, Leu342, and Ile389) and one away from the interface (Leu349, as a control). DSC analysis indicated that PDZ3-F340A and PDZ3-L342A exhibited a single endothermic peak. Furthermore, PDZ3-L342A underwent a perfect two-state denaturation, as evidenced by the single endothermic peak and confirmed by detailed DSC analysis, including global fitting of data measured at different protein concentrations. Reversible oligomerization (RO) at high temperatures by small globular proteins is a rare event. Furthermore, our present study showing that a point mutation, L342A, designed based on the crystal structure inhibited RO is surprising because RO occurs at a high-temperature. Future studies will determine how and why mutations designed using crystal structures determined at ambient temperatures influence the formation of RO at high temperatures, and whether high-temperature ROs are related to the propensity of proteins to aggregate or precipitate at lower temperatures, which would provide a novel and unique way of controlling protein solubility and aggregation.


Assuntos
Temperatura Alta , Mutação Puntual , Varredura Diferencial de Calorimetria , Desnaturação Proteica , Temperatura , Termodinâmica
7.
Biochemistry ; 59(39): 3660-3668, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924442

RESUMO

Protein amorphous aggregation has become the focus of great attention, as it can impair the ability of cells to function properly. Here, we evaluated the effects of three peptide tags, consisting of one, three, and five consecutive isoleucines attached at the C-terminus end of a simplified bovine pancreatic trypsin inhibitor (BPTI) variant, BPTI-19A, on the thermal stability and oligomerization by circular dichroism spectrometry and differential scanning calorimetry in detail. All of the BPTI-19A variants exhibited a reversible and apparently two-state thermal transition like BPTI-19A at pH 4.7. The thermal transition of the five-isoleucine-tagged variant showed clear protein-concentration dependence, where the apparent denaturation temperature decreased as the protein concentration increased. Quantitative analysis indicated that this phenomenon originated from the presence of reversibly oligomerized (RO) states at high temperatures. The results also illustrated that the thermodynamic stability difference between the native and the monomeric denatured state in all the proteins was destabilized by the hydrophobic tags and was well explained by the reverse hydrophobic effect due to the tags. The existence of the RO states was confirmed by both analytical ultracentrifugation and dynamic light scattering. This indicated that the five-isoleucine hydrophobic tag is strong enough to induce intermolecular hydrophobic contact among the denatured molecules leading to oligomerization, and even one- or three-isoleucine tags are effective enough to generate intramolecular hydrophobic contact, thus provoking denaturation through the reverse hydrophobic effect.


Assuntos
Aprotinina/química , Isoleucina/química , Agregados Proteicos , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peptídeos/química , Multimerização Proteica , Estabilidade Proteica
8.
Mol Pharm ; 17(5): 1629-1637, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227965

RESUMO

Subvisible aggregates of proteins are suspected to cause adverse immune response, and a recent FDA guideline has recommended the monitoring of micrometer-sized aggregates (2-10 µm) though recognizing that the underlying mechanism behind aggregation and immunogenicity remains unclear. Here, we report a correlation between the immunogenicity and the size of nanometer-scaled aggregates of a small 6.5 kDa model protein, bovine pancreatic trypsin inhibitor (BPTI) variant. BPTI-19A, a monomeric and nonimmunogenic protein, was oligomerized into subvisible aggregates with hydrodynamic radii (Rh) of 3-4 nm by attaching hydrophobic solubility controlling peptide (SCP) tags to its C-terminus. The results showed that the association of nonimmunogenic BPTI into nanometer-sized subvisible aggregates made it highly immunogenic, as assessed by the IgG antibody titers of the mice's sera. Overall, the study emphasizes that subvisible aggregates, as small as a few nanometers, which are presently ignored, are worth monitoring for deciphering the origin of undesired immunogenicity of therapeutic proteins.


Assuntos
Aprotinina/imunologia , Agregados Proteicos/imunologia , Animais , Aprotinina/química , Feminino , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos ICR , Multimerização Proteica , Solubilidade
9.
Biophys Rev ; 10(2): 229-233, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29188538

RESUMO

Researchers in the field of structural biology, especially X-ray crystallography and protein nuclear magnetic resonance, are interested in knowing as much as possible about the state of their target protein in solution. Not only is this knowledge relevant to studies of biological function, it also facilitates determination of a protein structure using homogeneous monodisperse protein samples. A researcher faced with a new protein to study will have many questions even after that protein has been purified. Analytical ultracentrifugation (AUC) can provide all of this information readily from a small sample in a non-destructive way, without the need for labeling, enabling structure determination experiments without any wasting time and material on uncharacterized samples. In this article, I use examples to illustrate how AUC can contribute to protein structural analysis. Integrating information from a variety of biophysical experimental methods, such as X-ray crystallography, small angle X-ray scattering, electrospray ionization-mass spectrometry, AUC allows a more complete understanding of the structure and function of biomacromolecules.

10.
FEBS J ; 284(18): 3114-3127, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28736891

RESUMO

Amyloid light-chain (AL) amyloidosis is a protein-misfolding disease characterized by accumulation of immunoglobulin light chains (LCs) into amyloid fibrils. Dimerization of a full length or variable domain (VL ) of LC serves to stabilize the native state and prevent the formation of amyloid fibrils. We here analyzed the thermodynamic properties of dimerization and unfolding reactions by nonamyloidogenic VL from REI LC or its monomeric Y96K mutant using sedimentation velocity and circular dichroism. The data indicate that the equilibrium shifts to native dimerization for wild-type REI VL by elevating temperature due to the negative enthalpy change for dimer dissociation (-81.2 kJ·mol-1 ). The Y96K mutation did not affect the stability of the monomeric native state but increased amyloidogenicity. These results suggest that the heat-induced native homodimerization is the major factor preventing amyloid formation by wild-type REI VL . Heat-induced native oligomerization may be an efficient strategy to avoid the formation of misfolded aggregates particularly for thermostable proteins that are used at elevated temperatures under conditions where other proteins tend to misfold. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 5XP1 and 5XQY.


Assuntos
Amiloide/química , Cadeias Leves de Imunoglobulina/química , Região Variável de Imunoglobulina/química , Sequência de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Difração de Raios X
11.
Sci Rep ; 7(1): 1764, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496122

RESUMO

Survival of Clonorchis sinensis, a cause of human clonorchiasis, requires tegument proteins, which are localized to the tegumental outer surface membrane. These proteins play an important role in a host response and parasite survival. Thus, these proteins are interesting molecular targets for vaccine and drug development. Here, we have determined two crystal structures of the calmodulin like domain (amino acid [aa] positions 1-81) and dynein light chain (DLC)-like domain (aa 83-177) of a 20.8-kDa tegumental-allergen-like protein from Clonorchis sinensis (CsTAL3). The calmodulin like domain has two Ca2+-binding sites (named CB1 and CB2), but Ca2+ binds to only one site, CB1. The DLC-like domain has a dimeric conformation; the interface is formed mainly by hydrogen bonds between the main chain atoms. In addition, we have determined full-length structure of CsTAL3 in solution and showed the conformational change of CsTAL3 induced by Ca2+ ion binding using small-angle X-ray scattering analysis and molecular dynamics simulations. The Ca2+-bound form has a more extended conformation than the Ca2+-free from does. These structural and biochemical analyses will advance the understanding of the biology of this liver fluke and may contribute to our understanding of the molecular mechanism of calcium-responsive and tegumental-allergen-like proteins.


Assuntos
Alérgenos/química , Clonorchis sinensis/química , Proteínas de Helminto/química , Sequência de Aminoácidos , Animais , Modelos Moleculares , Peso Molecular , Domínios Proteicos , Multimerização Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Soluções , Difração de Raios X
12.
Cell Rep ; 18(11): 2651-2663, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297669

RESUMO

During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon.


Assuntos
Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Fator de Iniciação 1 em Eucariotos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Genes Cells ; 21(12): 1333-1352, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27860073

RESUMO

Hmo1, a member of HMGB family proteins in Saccharomyces cerevisiae, binds to and regulates the transcription of genes encoding ribosomal RNA and ribosomal proteins. The functional motifs of Hmo1 include two HMG-like motifs, box A and box B, and a C-terminal tail. To elucidate the molecular roles of the HMG-like boxes in DNA binding in vivo, we analyzed the DNA-binding activity of various Hmo1 mutants using ChIP or reporter assays that enabled us to conveniently detect Hmo1 binding to the promoter of RPS5, a major target gene of Hmo1. Our mutational analyses showed that box B is a bona fide DNA-binding motif and that it also plays other important roles in cell growth. However, box A, especially its first α-helix, contributes to DNA binding of Hmo1 by inducing self-assembly of Hmo1. Intriguingly, box A mediated formation of oligomers of more than two proteins on DNA in vivo. Furthermore, duplication of the box B partially alleviates the requirement for box A. These findings suggest that the principal role of box A is to assemble multiple box B in the appropriate orientation, thereby stabilizing the binding of Hmo1 to DNA and nucleating specific chromosomal architecture on its target genes.


Assuntos
DNA Fúngico/metabolismo , Domínios HMG-Box , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Domínios HMG-Box/genética , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Mutação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Proc Natl Acad Sci U S A ; 113(24): 6659-64, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247413

RESUMO

Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.


Assuntos
Adenilil Ciclases/química , Proteínas de Bactérias/química , AMP Cíclico/química , Oscillatoria/enzimologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Ativação Enzimática/genética , Ativação Enzimática/efeitos da radiação , Células HEK293 , Humanos , Luz , Oscillatoria/genética , Domínios Proteicos , Sistemas do Segundo Mensageiro/genética , Sistemas do Segundo Mensageiro/efeitos da radiação , Relação Estrutura-Atividade
15.
Sci Rep ; 6: 28344, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321048

RESUMO

MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galß(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galß(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the ß-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects.


Assuntos
Linfoma de Burkitt/metabolismo , Lectinas/química , Mytilus/química , Trissacarídeos/química , Animais , Sítios de Ligação , Linfoma de Burkitt/tratamento farmacológico , Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular , Clonagem Molecular , Cristalografia por Raios X , Hemaglutininas/química , Humanos , Ligantes , Modelos Moleculares , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Ultracentrifugação
16.
Genes Dev ; 29(15): 1649-60, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26215567

RESUMO

The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the ß sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.


Assuntos
Modelos Moleculares , Proteínas Nucleares/química , Sítios de Splice de RNA , Ribonucleoproteínas/química , Schizosaccharomyces/fisiologia , Dedos de Zinco/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Schizosaccharomyces/química , Fator de Processamento U2AF
17.
J Am Chem Soc ; 137(35): 11285-93, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26120734

RESUMO

The design of novel proteins that self-assemble into supramolecular complexes is an important step in the development of synthetic biology and nanotechnology. Recently, we described the three-dimensional structure of WA20, a de novo protein that forms an intermolecularly folded dimeric 4-helix bundle (PDB code 3VJF ). To harness the unusual intertwined structure of WA20 for the self-assembly of supramolecular nanostructures, we created a protein nanobuilding block (PN-Block), called WA20-foldon, by fusing the dimeric structure of WA20 to the trimeric foldon domain of fibritin from bacteriophage T4. The WA20-foldon fusion protein was expressed in the soluble fraction in Escherichia coli, purified, and shown to form several homooligomeric forms. The stable oligomeric forms were further purified and characterized by a range of biophysical techniques. Size exclusion chromatography, multiangle light scattering, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) analyses indicate that the small (S form), middle (M form), and large (L form) forms of the WA20-foldon oligomers exist as hexamer (6-mer), dodecamer (12-mer), and octadecamer (18-mer), respectively. These findings suggest that the oligomers in multiples of 6-mer are stably formed by fusing the interdigitated dimer of WA20 with the trimer of foldon domain. Pair-distance distribution functions obtained from the Fourier inversion of the SAXS data suggest that the S and M forms have barrel- and tetrahedron-like shapes, respectively. These results demonstrate that the de novo WA20-foldon is an effective building block for the creation of self-assembling artificial nanoarchitectures.

18.
Biochem Biophys Res Commun ; 462(1): 46-51, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25935485

RESUMO

Rap1B is a small GTPase involved in the regulation of numerous cellular processes including synaptic plasticity, one of the bases of memory. Like other members of the Ras family, the active GTP-bound form of Rap1B can bind to a large number of effector proteins and so transmit signals to downstream components of the signaling pathways. The structure of Rap1B bound only to a nucleotide has yet to be solved, but might help reveal an inactive conformation that can be stabilized by a small molecule drug. Unlike other Ras family proteins such as H-Ras and Rap2A, Rap1B crystallizes in an intermediate state when bound to a non-hydrolyzable GTP analog. Comparison with H-Ras and Rap2A reveals conservative mutations relative to Rap1B, distant from the bound nucleotide, which control how readily the protein may adopt the fully activated form in the presence of GTP. High resolution crystallographic structures of mutant proteins show how these changes may influence the hydrogen bonding patterns of the key switch residues.


Assuntos
Mutação , Estrutura Terciária de Proteína , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Ratos , Homologia de Sequência de Aminoácidos , Proteínas rap de Ligação ao GTP/metabolismo
19.
PLoS One ; 10(2): e0115995, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658636

RESUMO

In this study, we determined the crystal structure of N-terminal importin-ß-binding domain (IBB)-truncated human importin-α1 (ΔIBB-h-importin-α1) at 2.63 Å resolution. The crystal structure of ΔIBB-h-importin-α1 reveals a novel closed homodimer. The homodimer exists in an autoinhibited state in which both the major and minor nuclear localization signal (NLS) binding sites are completely buried in the homodimerization interface, an arrangement that restricts NLS binding. Analytical ultracentrifugation studies revealed that ΔIBB-h-importin-α1 is in equilibrium between monomers and dimers and that NLS peptides shifted the equilibrium toward the monomer side. This finding suggests that the NLS binding sites are also involved in the dimer interface in solution. These results show that when the IBB domain dissociates from the internal NLS binding sites, e.g., by binding to importin-ß, homodimerization possibly occurs as an autoinhibition state.


Assuntos
Multimerização Proteica , alfa Carioferinas/química , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(42): 15102-7, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288768

RESUMO

The modular structure of many protein families, such as ß-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical ß-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.


Assuntos
Mycobacterium tuberculosis/enzimologia , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas/química , Sequência de Aminoácidos , Biofísica , Dicroísmo Circular , Cristalografia por Raios X , Luz , Modelos Moleculares , Modelos Teóricos , Dados de Sequência Molecular , Nanotecnologia , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Software , Espectrometria de Massas por Ionização por Electrospray , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA