Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Respir Res ; 25(1): 49, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245732

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Assuntos
Bronquite Crônica , Ciliopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Bronquite Crônica/induzido quimicamente , Bronquite Crônica/metabolismo , Fumaça/efeitos adversos , Madeira/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa , Produtos do Tabaco
2.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005908

RESUMO

The use of the Ratio of Oxygen Saturation (ROX) index to predict the success of high-flow nasal oxygenation (HFNO) is well established. The ROX can also predict the need for intubation, mortality, and is easier to calculate compared with APACHE II. In this prospective study, the primary aim is to compare the ROX (easily administered in resource limited setting) to APACHE II for clinically relevant outcomes such as mortality and the need for intubation. Our secondary aim was to identify thresholds for the ROX index in predicting outcomes such as the length of ICU stay and failure of non-invasive respiratory support therapies and to assess the effectiveness of using the ROX (day 1 at admission, day 2, and day 3) versus Acute physiology and chronic health evaluation (APACHE) II scores (at admission) in patients with Coronavirus Disease 2019 (COVID-19) pneumonia and Acute Respiratory Distress Syndrome (ARDS) to predict early, late, and non-responders. After screening 208 intensive care unit patients, a total of 118 COVID-19 patients were enrolled, who were categorized into early (n = 38), late (n = 34), and non-responders (n = 46). Multinomial logistic regression, receiver operating characteristic (ROC), Multivariate Cox regression, and Kaplan-Meier analysis were conducted. Multinomial logistic regressions between late and early responders and between non- and early responders were associated with reduced risk of treatment failures. ROC analysis for early vs. late responders showed that APACHE II on admission had the largest area under the curve (0.847), followed by the ROX index on admission (0.843). For responders vs. non-responders, we found that the ROX index on admission had a slightly better AUC than APACHE II on admission (0.759 vs. 0.751). A higher ROX index on admission [HR (95% CI): 0.29 (0.13-0.52)] and on day 2 [HR (95% CI): 0.55 (0.34-0.89)] were associated with a reduced risk of treatment failure. The ROX index can be used as an independent predictor of early response and mortality outcomes to HFNO and NIV in COVID-19 pneumonia, especially in low-resource settings, and is non-inferior to APACHE II.


Assuntos
COVID-19 , Ventilação não Invasiva , Pneumonia , Humanos , APACHE , Estudos Prospectivos , COVID-19/terapia , Prognóstico , Estudos Retrospectivos
3.
J Inflamm (Lond) ; 20(1): 39, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978397

RESUMO

Clinical cases and experimental evidence revealed that electronic cigarettes (ECIG) induce serious adverse health effects, but underlying mechanisms remain to be fully uncovered. Based on recent exploratory evidence, investigating the effects of ECIG on macrophages can broadly define potential mechanisms by focusing on the effect of ECIG exposure with or without nicotine. Here we investigated the effect of ECIG-aerosol exposure on macrophages (MQ) phenotype, inflammatory response, and function of macrophages.MQ were cultured at air liquid interface and exposed to ECIG-aerosol. Oxidative stress was determined by reactive oxygen species (ROS), heat shock protein 60 (HSP60), glutathione peroxidase (GPx) and heme oxygenase1 (HMOX1). Lipid accumulation and lipid peroxidation were defined by lipid staining and level of malondialdehyde (MDA) respectively. MQ polarization was identified by surface expression markers CD86, CD11C and CD206 as well as pro-inflammatory and anti-inflammatory cytokines in gene and protein level. Phagocytosis of E. coli by MQ was investigated by fluorescence-based phagocytosis assay.ECIG-aerosol exposure in presence or absence of nicotine induced oxidative stress evidenced by ROS, HSP60, GPx, GPx4 and HMOX1 upregulation in MQ. ECIG-aerosol exposure induced accumulation of lipids and the lipid peroxidation product MDA in MQ. Pro-inflammatory MQ (M1) markers CD86 and CD11C but not anti-inflammatory MQ (M2) marker CD206 were upregulated in response to ECIG-aerosol exposure. In addition, ECIG induced pro-inflammatory cytokines IL-1beta and IL-8 in gene level and IL-6, IL-8, and IL-1beta in protein level whereas ECIG exposure downregulated anti-inflammatory cytokine IL-10 in protein level. Phagocytosis activity of MQ was downregulated by ECIG exposure. shRNA mediated lipid scavenger receptor 'CD36' silencing inhibited ECIG-aerosol-induced pro-inflammatory MQ polarization and recovered phagocytic activity of MQ.ECIG exposure alters lung lipid homeostasis and thus induced inflammation by inducing M1 type MQ and impair phagocytic function, which could be a potential cause of ECIG-induced lung inflammation in healthy and inflammatory exacerbation in disease condition.

4.
Viruses ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37766286

RESUMO

High-flow nasal cannula (HFNC) and ventilator-delivered non-invasive mechanical ventilation (NIV) were used to treat acute respiratory distress syndrome (ARDS) due to COVID-19 pneumonia, especially in low- and middle-income countries (LMICs), due to lack of ventilators and manpower resources despite the paucity of data regarding their efficacy. This prospective study aimed to analyse the efficacy of HFNC versus NIV in the management of COVID-19 ARDS. A total of 88 RT-PCR-confirmed COVID-19 patients with moderate ARDS were recruited. Linear regression and generalized estimating equations (GEEs) were used for trends in vital parameters over time. A total of 37 patients were on HFNC, and 51 were on NIV. Patients in the HFNC group stayed slightly but not significantly longer in the ICU as compared to their NIV counterparts (HFNC vs. NIV: 8.00 (4.0-12.0) days vs. 7.00 (2.0-12.0) days; p = 0.055). Intubation rates, complications, and mortality were similar in both groups. The switch to HFNC from NIV was 5.8%, while 37.8% required a switch to NIV from HFNC. The resolution of respiratory alkalosis was better with NIV. We conclude that in patients with COVID-19 pneumonia with moderate ARDS, the duration of treatment in the ICU, intubation rate, and mortality did not differ significantly with the use of HFNC or NIV for respiratory support.


Assuntos
COVID-19 , Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Cânula , Respiração Artificial , Estudos Prospectivos , COVID-19/terapia
5.
Toxics ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37624172

RESUMO

Heated tobacco products (HTPs) are novel products that allow users to inhale nicotine by heating (350 °C) reconstituted tobacco rather than combustion (900 °C) as in conventional cigarettes. HTP sticks containing reconstituted tobacco come in various flavours such as menthol, citrus, etc., like electronic cigarette liquids. Thus, the composition of HTP aerosol will also vary according to the flavouring agents added. Overall, the content of toxic chemicals in HTP aerosol appears to be lower than in cigarette smoke. However, the concentrations of more than twenty harmful and potentially harmful constituents have been reported to be higher in HTP aerosol than in cigarette smoke. Further, several toxic compounds not detected in cigarette smoke are also reported in HTP aerosol. Thus, the risks of HTP use remain unknown. Most of the available data on the composition and health effects of mainstream HTP aerosol exposure are generated by the tobacco industry. Few independent studies have reported short-term pathophysiological effects of HTP use. Currently available HTP toxicity data are mainly on the pulmonary and cardiovascular systems. Moreover, there are no long-term toxicity data and, therefore, the claims of the tobacco industry regarding HTPs as a safer alternative to traditional combustible cigarettes are unsubstantiated. Furthermore, HTP aerosol contains the highly addictive substance nicotine, which is harmful to the adolescent brain, developing foetuses, pregnant women, and also adults. Hence, comprehensive studies addressing the safety profiling related to long-term HTP use are warranted. With this background, the following review summarizes the current state of knowledge on HTP toxicity on four broad lines: composition of mainstream HTP aerosol compared to traditional combustible cigarette smoke, biomarkers of HTP exposure, health effects of HTP exposure, and the harm reduction aspect.

6.
Toxics ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37368632

RESUMO

Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects.

7.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174681

RESUMO

There is a need for biomarkers to predict outcomes, including mortality, in interstitial lung disease (ILD). Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) are associated with lung damage and fibrosis in all ILDs and are related to important clinical outcomes. Though these two biomarkers have been associated with ILD outcomes, there are no studies that have evaluated their predictive potential in combination. This study aims to determine whether KL-6 and SP-D are linked to poor disease outcomes and mortality. Additionally, we plan to examine whether changes in KL-6 and SP-D concentrations correspond with changes in lung function and whether serial measurements improve their predictive potential to identify disease progression and mortality. Forty-four patients with ILD participated in a prospective 6-month longitudinal observational study. ILD patients who succumbed had the highest KL-6 levels (3990.4 U/mL (3490.0-4467.6)) and highest SP-D levels (256.1 ng/mL (217.9-260.0)), followed by those who deteriorated: KL-6 levels 1357.0 U/mL (822.6-1543.4) and SP-D levels 191.2 ng/mL (152.8-210.5). The generalized linear model (GLM) analysis demonstrated that changes in forced vital capacity (FVC), diffusing capacity of lungs for carbon monoxide (DLCO), forced expiratory volume in 1 s (FEV1), and partial pressure of arterial oxygen (PaO2) were correlated to changes in KL6 (p = 0.016, 0.014, 0.027, 0.047) and SP-D (p = 0.008, 0.012, 0.046, 0.020), respectively. KL-6 (odds ratio (OR): 2.87 (1.06-7.79)) and SPD (OR: 1.76 (1.05-2.97)) were independent predictors of disease progression, and KL-6 (hazard ratio (HR): 3.70 (1.46-9.41)) and SPD (HR: 2.58 (1.01-6.59)) were independent predictors of death by Cox regression analysis. Combined biomarkers (KL6 + SPD + CT + FVC) had the strongest ability to predict disease progression (AUC: 0.797) and death (AUC: 0.961), on ROC analysis. Elevated KL-6 and SPD levels are vital biomarkers for predicting the severity, progression, and outcomes of ILD. High baseline levels or an increase in levels over a six-month follow-up despite treatment indicate a poor prognosis. Combining KL6 and SPD with conventional measures yields a more potent prognostic indicator. Clinical studies are needed to test additional interventions, and future research will determine if this combined biomarker benefits different ethnicities globally.


Assuntos
Doenças Pulmonares Intersticiais , Proteína D Associada a Surfactante Pulmonar , Humanos , Estudos Prospectivos , Progressão da Doença , Tensoativos
8.
Toxics ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36355958

RESUMO

Acute exacerbations of COPD (AECOPD) are clinically significant events having therapeutic and prognostic consequences. However, there is a lot of variation in its clinical manifestations described by phenotypes. The phenotypes of AECOPD were categorized in this study based on pathology and exposure. In our cross-sectional study, conducted between 1 January 2016 to 31 December 2020, the patients were categorized into six groups based on pathology: non-bacterial and non-eosinophilic; bacterial; eosinophilic; bacterial infection with eosinophilia; pneumonia; and bronchiectasis. Further, four groups were classified based on exposure to tobacco smoke (TS), biomass smoke (BMS), both, or no exposure. Cox proportional-hazards regression analyses were performed to assess hazard ratios, and Kaplan-Meier analysis was performed to assess survival, which was then compared using the log-rank test. The odds ratio (OR) and independent predictors of ward admission type and length of hospital stay were assessed using binomial logistic regression analyses. Of the 2236 subjects, 2194 were selected. The median age of the cohort was 67.0 (60.0 to 74.0) and 75.2% were males. Mortality rates were higher in females than in males (6.2% vs. 2.3%). AECOPD-B (bacterial infection) subjects [HR 95% CI 6.42 (3.06-13.46)], followed by AECOPD-P (pneumonia) subjects [HR (95% CI: 4.33 (2.01-9.30)], were at higher mortality risk and had a more extended hospital stay (6.0 (4.0 to 9.5) days; 6.0 (4.0 to 10.0). Subjects with TS and BMS-AECOPD [HR 95% CI 7.24 (1.53-34.29)], followed by BMS-AECOPD [HR 95% CI 5.28 (2.46-11.35)], had higher mortality risk. Different phenotypes have different impacts on AECOPD clinical outcomes. A better understanding of AECOPD phenotypes could contribute to developing an algorithm for the precise management of different phenotypes.

9.
Sci Rep ; 12(1): 16396, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180488

RESUMO

Heated tobacco products (HTP) are novel nicotine delivery products with limited toxicological data. HTP uses heating instead of combustion to generate aerosol (HTP-smoke). Physiologically relevant human bronchial and alveolar lung mucosa models developed at air-liquid interface were exposed to HTP-smoke to assess broad toxicological response (n = 6-7; ISO puffing regimen; compared to sham; non-parametric statistical analysis; significance: p < 0.05). Elevated levels of total cellular reactive oxygen species, stress responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2'-deoxyguanosine, phosphorylated histone H2AX, cleaved poly-(ADP-Ribose) polymerase] were detected in HTP-smoke exposed bronchial and/or alveolar models. RNA sequencing detected differential regulation of 724 genes in the bronchial- and 121 genes in the alveolar model following HTP-smoke exposure (cut off: p ≤ 0.01; fold change: ≥ 2). Common enriched pathways included estrogen biosynthesis, ferroptosis, superoxide radical degradation, xenobiotics, and α-tocopherol degradation. Secreted levels of interleukin (IL)1ꞵ and IL8 increased in the bronchial model whereas in the alveolar model, interferon-γ and IL4 increased and IL13 decreased following HTP-smoke exposure. Increased lipid peroxidation was detected in HTP-smoke exposed bronchial and alveolar models which was inhibited by ferrostatin-1. The findings form a basis to perform independent risk assessment studies on different flavours of HTP using different puffing topography and corresponding chemical characterization.


Assuntos
Produtos do Tabaco , 8-Hidroxi-2'-Desoxiguanosina , Adenosina Difosfato Ribose , Aerossóis/análise , Estrogênios , Histonas , Humanos , Interferon gama , Interleucina-13 , Interleucina-4 , Interleucina-8 , Mucosa/química , Nicotina/análise , Espécies Reativas de Oxigênio , Fumaça/análise , Superóxidos/análise , Nicotiana , Produtos do Tabaco/análise , alfa-Tocoferol
10.
Vaccines (Basel) ; 10(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36016121

RESUMO

Several studies have proposed that the neutrophil−lymphocyte ratio (NLR) is one of the various biomarkers that can be useful in assessing COVID-19 disease-related outcomes. Our systematic review analyzes the relationship between on-admission NLR values and COVID-19 severity and mortality. Six different severity criteria were used. A search of the literature in various databases was conducted from 1 January 2020 to 1 May 2021. We calculated the pooled standardized mean difference (SMD) for the collected NLR values. A meta-regression analysis was performed, looking at the length of hospitalization and other probable confounders, such as age, gender, and comorbidities. A total of sixty-four studies were considered, which included a total of 15,683 patients. The meta-analysis showed an SMD of 3.12 (95% CI: 2.64−3.59) in NLR values between severe and non-severe patients. A difference of 3.93 (95% CI: 2.35−5.50) was found between survivors and non-survivors of the disease. Upon summary receiver operating characteristics analysis, NLR showed 80.2% (95% CI: 74.0−85.2%) sensitivity and 75.8% (95% CI: 71.3−79.9%) specificity for the prediction of severity and 78.8% (95% CI: 73.5−83.2%) sensitivity and 73.0% (95% CI: 68.4−77.1%) specificity for mortality, and was not influenced by age, gender, or co-morbid conditions. Conclusion: On admission, NLR predicts both severity and mortality in COVID-19 patients, and an NLR > 6.5 is associated with significantly greater the odds of mortality.

11.
Vaccines (Basel) ; 10(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891259

RESUMO

To achieve herd immunity to a disease, a large portion of the population needs to be vaccinated, which is possible only when there is broad acceptance of the vaccine within the community. Thus, policymakers need to understand how the general public will perceive the vaccine. This study focused on the degree of COVID-19 vaccine hesitancy and refusal and explored sociodemographic correlations that influence vaccine hesitancy and refusal. A cross-sectional online survey was conducted among the adult population of India. The survey consisted of basic demographic questions and questions from the Vaccination Attitudes Examination (VAX) Scale. Multinomial logistical regression was used to identify correlates of vaccine hesitancy and refusal. Of the 1582 people in the study, 9% refused to become vaccinated and 30.8% were hesitant. We found that both hesitancy and refusal predictors were nearly identical (lower socioeconomic status, female gender, and older age groups), except for three groups (subjects aged 45−64 years, those with approximate income <10,000 INR/month, and those residing in rural households) that showed slightly higher odds of vaccine hesitancy than refusal. We need to address the underlying sociodemographic determinants and formulate public awareness programs to address specific subgroups that are at higher risk of rejecting the vaccine and convert those who are undecided or hesitant into those willing to accept the vaccine.

12.
Toxics ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35736886

RESUMO

There is mounting evidence that shows the association between chronic exposure to air pollutants (particulate matter and gaseous) and onset of various respiratory impairments. However, the corresponding toxicological mechanisms of mixed exposure are poorly understood. Therefore, in this study, we aimed to establish a repeated exposure setting for evaluating the pulmonary toxicological effects of diesel exhaust particles (DEP), nitrogen dioxide (NO2), and sulfur dioxide (SO2) as representative criterial air pollutants. Single, combined (DEP with NO2 and SO2), and repeated exposures were performed using physiologically relevant human bronchial mucosa models developed at the air−liquid interface (bro-ALI). The bro-ALI models were generated using human primary bronchial epithelial cells (3−4 donors; 2 replicates per donor). The exposure regime included the following: 1. DEP (12.5 µg/cm2; 3 min/day, 3 days); 2. low gaseous (NO2: 0.1 ppm + SO2: 0.2 ppm); (30 min/day, 3 days); 3. high gaseous (NO2: 0.2 ppm + SO2: 0.4 ppm) (30 min/day, 3 days); and 4. single combined (DEP + low gaseous for 1 day). The markers for pro-inflammatory (IL8, IL6, NFKB, TNF), oxidative stress (HMOX1, GSTA1, SOD3,) and tissue injury/repair (MMP9, TIMP1) responses were assessed at transcriptional and/ or secreted protein levels following exposure. The corresponding sham-exposed samples under identical conditions served as the control. A non-parametric statistical analysis was performed and p < 0.05 was considered as significant. Repeated exposure to DEP and single combined (DEP + low gaseous) exposure showed significant alteration in the pro-inflammatory, oxidative stress and tissue injury responses compared to repeated exposures to gaseous air pollutants. The study demonstrates that it is feasible to predict the long-term effects of air pollutants using the above explained exposure system.

13.
Environ Res ; 208: 112760, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065933

RESUMO

Despite the growing popularity of electronic cigarettes (e-cigarettes) over the last decade, few epidemiological studies have examined the influence on respiratory health in young adulthood. The aim of this study was to identify factors associated with e-cigarette use in young adulthood in Sweden, and to examine associations between e-cigarette use and lung function, respiratory symptoms, and obesity. This cross-sectional study included 3055 young adults from Sweden and used questionnaire and clinical data obtained at age 22-25 years. The prevalence of current e-cigarette use was 3.9% (n = 120). Few participants reported daily (0.4%) or exclusive (0.8%) use of e-cigarettes. In a multivariable adjusted logistic regression model, e-cigarette use was significantly associated with male gender (OR:3.2; 95% CI:1.5-6.7) and cigarette smoking (OR:14.7; 95% CI:5.5-39.0 for daily smoking). Prevalence of cough (15.0% vs. 8.5%) and mucus production (22.3% vs. 14.8%) was significantly higher among e-cigarette users compared to non-users, while no difference in lung function was observed. In addition, the prevalence of overweight/obesity was higher among e-cigarette users compared to non-users (36.7% vs. 22.3% with BMI≥25 kg/m2). In conclusion, cigarette smokers and males used e-cigarette more often compared to females and non-cigarette smokers. Attention should be given to respiratory symptoms among e-cigarette users, although our results may be explained by the concurrent use of conventional cigarettes, as the group of exclusive e-cigarette users were too small to allow firm conclusions.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Adulto , Coorte de Nascimento , Estudos Transversais , Feminino , Humanos , Masculino , Obesidade/epidemiologia , Suécia/epidemiologia , Vaping/epidemiologia , Adulto Jovem
14.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960806

RESUMO

BACKGROUND: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. METHODS: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air-liquid interface (ALI) (n = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). RESULTS: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. CONCLUSIONS: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.


Assuntos
Pulmão/metabolismo , Mucosa Respiratória/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
15.
Toxics ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564359

RESUMO

Secretoglobin family 1A member 1 (SCGB1A1) alternatively known as club cell protein 16 is a protective pneumo-protein. Decreased serum levels of SCGB1A1 have been associated with tobacco smoke induced chronic obstructive pulmonary disease (TS-COPD). Exposure to biomass smoke (BMS) is an important COPD risk factor among women in low and lower-middle income countries. Therefore, in a cross-sectional study (n = 50/group; total 200 subjects) we assessed serum SCGB1A1 levels in BMS-COPD subjects (11 male, 39 female) compared to TS-COPD (all male) along with TS-CONTROL (asymptomatic smokers, all male) and healthy controls (29 male, 21 female) in an Indian population. Normal and chronic bronchitis like bronchial mucosa models developed at the air-liquid interface using human primary bronchial epithelial cells (3 donors, and three replicates per donor) were exposed to cigarette smoke condensate (CSC; 0.25, 0.5, and 1%) to assess SCGB1A1 transcript expression and protein secretion. Significantly (p < 0.0001) decreased serum SCGB1A1 concentrations (median, interquartile range, ng/mL) were detected in both BMS-COPD (1.6; 1.3-2.4) and TS-COPD (1.8; 1.4-2.5) subjects compared to TS-CONTROL (3.3; 2.9-3.5) and healthy controls (5.1; 4.5-7.2). The levels of SCGB1A1 were positively correlated (r = 0.7-0.8; p < 0.0001) with forced expiratory volume in 1 s, forced vital capacity, their ratios, and exercise capacity. The findings are also consistent within the BMS-COPD sub-group as well. Significantly (p < 0.03) decreased SCGB1A1 concentrations were detected with severity of COPD, dyspnea, quality of life, and mortality indicators. In vitro studies demonstrated significantly (p < 0.05) decreased SCGB1A1 transcript and/or protein levels following CSC exposure. Circulating SCGB1A1 levels may therefore also be considered as a potent marker of BMS-COPD and warrant studies in larger independent cohorts.

16.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L41-L62, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33050709

RESUMO

In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.


Assuntos
Lesão Pulmonar Aguda/patologia , Amônia/toxicidade , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA
17.
Sci Rep ; 10(1): 20460, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235237

RESUMO

Limited toxicity data on electronic cigarette (ECIG) impede evidence-based policy recommendations. We compared two popular mixed fruit flavored ECIG-liquids with and without nicotine aerosolized at 40 W (E-smoke) with respect to particle number concentrations, chemical composition, and response on physiologically relevant human bronchial and alveolar lung mucosa models cultured at air-liquid interface. E-smoke was characterized by significantly increased particle number concentrations with increased wattage (25, 40, and 55 W) and nicotine presence. The chemical composition of E-smoke differed across the two tested flavors in terms of cytotoxic compounds including p-benzoquinone, nicotyrine, and flavoring agents (for example vanillin, ethyl vanillin). Significant differences in the expression of markers for pro-inflammation, oxidative stress, tissue injury/repair, alarm anti-protease, anti-microbial defense, epithelial barrier function, and epigenetic modification were observed between the flavors, nicotine content, and/ or lung models (bronchial or alveolar). Our findings indicate that ECIG toxicity is influenced by combination of multiple factors including flavor, nicotine content, vaping regime, and the region of respiratory tree (bronchial or alveolar). Toxic chemicals and flavoring agents detected in high concentrations in the E-smoke of each flavor warrant independent evaluation for their specific role in imparting toxicity. Therefore, multi-disciplinary approaches are warranted for comprehensive safety profiling of ECIG.


Assuntos
Brônquios/citologia , Marcadores Genéticos/efeitos dos fármacos , Nicotina/efeitos adversos , Alvéolos Pulmonares/citologia , Vaping/efeitos adversos , Brônquios/química , Brônquios/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/efeitos adversos , Aromatizantes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Tamanho da Partícula , Alvéolos Pulmonares/química , Alvéolos Pulmonares/efeitos dos fármacos
18.
Biomed Res Int ; 2020: 3259723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110918

RESUMO

BACKGROUND: Acrolein is a major component of environmental pollutants, cigarette smoke, and is also formed by heating cooking oil. We evaluated the interstrain variability of response to subchronic inhalation exposure to acrolein among inbred mouse strains for inflammation, oxidative stress, and tissue injury responses. Furthermore, we studied the response to acrolein vapor in the lung mucosa model using human primary bronchial epithelial cells (PBEC) cultured at an air-liquid interface (ALI) to evaluate the findings of mouse studies. METHODS: Female 129S1/SvlmJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ mice were exposed to 1 part per million (ppm) acrolein or filtered air for 11 weeks. Total cell counts and protein concentrations were measured in bronchoalveolar lavage (BAL) fluid to assess airway inflammation and membrane integrity. PBEC-ALI models were exposed to acrolein vapor (0.1 and 0.2 ppm) for 30 minutes. Gene expression of proinflammatory, oxidative stress, and tissue injury-repair markers was assessed (cut off: ≥2 folds; p < 0.05) in the lung models. RESULTS: Total BAL cell numbers and protein concentrations remained unchanged following acrolein exposure in all mouse strains. BALB/cByJ, C57BL/6J, and 129S1/SvlmJ strains were the most affected with an increased expression of proinflammatory, oxidative stress, and/or tissue injury markers. DBA/2J, C3H/HeJ, A/J, and FVB/NJ were affected to a lesser extent. Both matrix metalloproteinase 9 (Mmp9) and tissue inhibitor of metalloproteinase 1 (Timp1) were upregulated in the strains DBA/2J, C3H/HeJ, and FVB/NJ indicating altered protease/antiprotease balance. Upregulation of lung interleukin- (IL-) 17b transcript in the susceptible strains led us to investigate the IL-17 pathway genes in the PBEC-ALI model. Acrolein exposure resulted in an increased expression of IL-17A, C, and D; IL-1B; IL-22; and RAR-related orphan receptor A in the PBEC-ALI model. CONCLUSION: The interstrain differences in response to subchronic acrolein exposure in mouse suggest a genetic predisposition. Altered expression of IL-17 pathway genes following acrolein exposure in the PBEC-ALI models indicates that it has a central role in chemical irritant toxicity. The findings also indicate that genetically determined differences in IL-17 signaling pathway genes in the different mouse strains may explain their susceptibility to different chemical irritants.


Assuntos
Acroleína/farmacologia , Brônquios/diagnóstico por imagem , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Animais , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-17/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Toxics ; 8(3)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899560

RESUMO

This report summarizes the outcome of a workshop held in Mysuru, India in January 2020 addressing the adverse health effects of exposure to biomass smoke (BMS). The aim of the workshop was to identify uncertainties and gaps in knowledge and possible methods to address them in the Mysuru study on Determinants of Health in Rural Adults (MUDHRA) cohort. Specific aims were to discuss the possibility to improve and introduce new screening methods for exposure and effect, logistic limitations and other potential obstacles, and plausible strategies to overcome these in future studies. Field visits were included in the workshop prior to discussing these issues. The workshop concluded that multi-disciplinary approaches to perform: (a) indoor and personalized exposure assessment; (b) clinical and epidemiological field studies among children, adolescents, and adults; (c) controlled exposure experiments using physiologically relevant in vitro and in vivo models to understand molecular patho-mechanisms are warranted to dissect BMS-induced adverse health effects. It was perceived that assessment of dietary exposure (like phytochemical index) may serve as an important indicator for understanding potential protective mechanisms. Well trained field teams and close collaboration with the participating hospital were identified as the key requirements to successfully carry out the study objectives.

20.
Nanotoxicology ; 13(10): 1362-1379, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462114

RESUMO

Carbon nanoparticles (CNP) are generated by incomplete combustion of diesel engines. Several epidemiological studies associated higher susceptibility to particulate matter related adverse respiratory outcomes with preexisting conditions like chronic bronchitis (CB). Therefore, we compared the effect of CNP exposure on primary bronchial epithelial cells (PBEC) developed in air-liquid interface (ALI) models of normal versus CB-like-mucosa.PBEC cultured at ALI represented normal mucosa (PBEC-ALI). To develop CB-like-mucosa (PBEC-ALI/CB), 1 ng/ml interleukin-13 was added to the basal media of PBEC-ALI culturing. PBEC-ALI and PBEC-ALI/CB were exposed to sham or to aerosolized CNP using XposeALI® system. Protein levels of CXCL-8 and MMP-9 were measured in the basal media using ELISA. Transcript expression of pro-inflammatory (CXCL8, IL6, TNF, NFKB), oxidative stress (HMOX1, SOD3, GSTA1, GPx), tissue injury/repair (MMP9/TIMP1) and bronchial cell type markers (MUC5AC, CC10) were assessed using qRT-PCR.Increased secretion of CXCL-8 and MMP-9 markers was detected 24 h post-exposure in both PBEC-ALI and PBEC-ALI/CB with more pronounced effect in the later. Pro-inflammatory and tissue injury markers were increased at both 6 h and 24 h post-exposure in PBEC-ALI/CB. Oxidative stress markers exhibited similar responses at 6 h and 24 h post-exposure in PBEC-ALI/CB. The club cell specific marker CC10 was increased by 300 fold in PBEC-ALI/CB and 20 fold in PBEC-ALI following CNP exposure.Our data indicates an earlier and stronger reaction of pro-inflammatory, oxidative stress and tissue injury markers in PBEC-ALI/CB models compared to PBEC-ALI models following CNP exposure. The findings may provide insight into the plausible mechanisms of higher susceptibility among predisposed individuals to nanoparticle exposure.


Assuntos
Brônquios/efeitos dos fármacos , Bronquite Crônica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Bronquite Crônica/patologia , Carbono/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mucosa/efeitos dos fármacos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Material Particulado , Mucosa Respiratória/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA