Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886063

RESUMO

Persistent activity in excitatory pyramidal cells (PYRs) is a putative mechanism for maintaining memory traces during working memory. We have recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon that could serve as a substrate for persistent activity in PYRs through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modeling and mathematical analysis showed that the slowly inactivating potassium current KV1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the KV1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a coexisting stable fixed point corresponding to a nonspiking quiescent state. As KV1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation (HB) and then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without KV1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical HB, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable, KV1 inactivation.


Assuntos
Interneurônios , Modelos Neurológicos , Parvalbuminas , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Animais , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Córtex Entorrinal/fisiologia , Córtex Entorrinal/metabolismo , Masculino
2.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496528

RESUMO

Persistent activity in principal cells is a putative mechanism for maintaining memory traces during working memory. We recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon which could serve as a substrate for persistent activity in principal cells through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modelling and mathematical analysis showed that the slowly inactivating potassium current Kv1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the Kv1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a co-existing stable fixed point corresponding to a non-spiking quiescent state. As Kv1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without Kv1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical Hopf bifurcation, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable.

3.
Elife ; 122023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37404129

RESUMO

A synergistic combination of in vitro electrophysiology and multicompartmental modeling of rat CA1 pyramidal neurons identified TRPM4 channels as major drivers of cholinergic modulation of the firing rate during a triangular current ramp, which emulates the bump in synaptic input received while traversing the place field. In control, fewer spikes at lower frequencies are elicited on the down-ramp compared to the up-ramp due to long-term inactivation of the NaV channel. The cholinergic agonist carbachol (CCh) removes or even reverses this spike rate adaptation, causing more spikes to be elicited on the down-ramp than the up-ramp. CCh application during Schaffer collateral stimulation designed to simulate a ramp produces similar shifts in the center of mass of firing to later in the ramp. The non-specific TRP antagonist flufenamic acid and the TRPM4-specific blockers CBA and 9-phenanthrol, but not the TRPC-specific antagonist SKF96365, reverse the effect of CCh; this implicates the Ca2+-activated nonspecific cation current, ICAN, carried by TRPM4 channels. The cholinergic shift of the center of mass of firing is prevented by strong intracellular Ca2+ buffering but not by antagonists for IP3 and ryanodine receptors, ruling out a role for known mechanisms of release from intracellular Ca2+ stores. Pharmacology combined with modeling suggest that [Ca2+] in a nanodomain near the TRPM4 channel is elevated through an unknown source that requires both muscarinic receptor activation and depolarization-induced Ca2+ influx during the ramp. Activation of the regenerative inward TRPM4 current in the model qualitatively replicates and provides putative underlying mechanisms for the experimental observations.


Assuntos
Células Piramidais , Canais de Cátion TRPM , Ratos , Animais , Células Piramidais/fisiologia , Colinérgicos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo
4.
J Neurosci ; 42(18): 3768-3782, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332085

RESUMO

Many hippocampal CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially tuned, temporally diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to CA1 pyramidal neurons from male rats in vitro (slice electrophysiology) and in silico (multicompartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared with somatic ramps. We incorporated a four-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in the closed state, which comprises the available pool. PKC activator phorbol-dibutyrate, known to reduce NaV long-term inactivation, removed spike amplitude attenuation in vitro more visibly in dendrites and greatly reduced adaptation, consistent with our hypothesized mechanism. Intracellular application of a peptide inducing long-term NaV inactivation elicited spike amplitude attenuation during spike trains in the soma and greatly enhanced adaptation. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is a key mechanism of adaptation in CA1 pyramidal cells.SIGNIFICANCE STATEMENT The hippocampus plays an important role in certain types of memory, in part through context-specific firing of "place cells"; these cells were first identified in rodents as being particularly active when an animal is in a specific location in an environment, called the place field of that neuron. In this in vitro/in silico study, we found that long-term inactivation of sodium channels causes adaptation in the firing rate that could potentially skew the firing of CA1 hippocampal pyramidal neurons earlier within a place field. A computational model of the sodium channel revealed differential regulation of spike frequency and amplitude by long-term inactivation, which may be a general mechanism for spike frequency adaptation in the CNS.


Assuntos
Dendritos , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Dendritos/fisiologia , Hipocampo/fisiologia , Técnicas In Vitro , Masculino , Células Piramidais/fisiologia , Ratos , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA