Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur Radiol ; 34(4): 2677-2688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37798406

RESUMO

OBJECTIVE: To assess the accuracy of a virtual stenting tool based on coronary CT angiography (CCTA) and fractional flow reserve (FFR) derived from CCTA (FFRCT Planner) across different levels of image quality. MATERIALS AND METHODS: Prospective, multicenter, single-arm study of patients with chronic coronary syndromes and lesions with FFR ≤ 0.80. All patients underwent CCTA performed with recent-generation scanners. CCTA image quality was adjudicated using the four-point Likert scale at a per-vessel level by an independent committee blinded to the FFRCT Planner. Patient- and technical-related factors that could affect the FFRCT Planner accuracy were evaluated. The FFRCT Planner was applied mirroring percutaneous coronary intervention (PCI) to determine the agreement with invasively measured post-PCI FFR. RESULTS: Overall, 120 patients (123 vessels) were included. Invasive post-PCI FFR was 0.88 ± 0.06 and Planner FFRCT was 0.86 ± 0.06 (mean difference 0.02 FFR units, the lower limit of agreement (LLA) - 0.12, upper limit of agreement (ULA) 0.15). CCTA image quality was assessed as excellent (Likert score 4) in 48.3%, good (Likert score 3) in 45%, and sufficient (Likert score 2) in 6.7% of patients. The FFRCT Planner was accurate across different levels of image quality with a mean difference between FFRCT Planner and invasive post-PCI FFR of 0.02 ± 0.07 in Likert score 4, 0.02 ± 0.07 in Likert score 3 and 0.03 ± 0.08 in Likert score 2, p = 0.695. Nitrate dose ≥ 0.8mg was the only independent factor associated with the accuracy of the FFRCT Planner (95%CI - 0.06 to - 0.001, p = 0.040). CONCLUSION: The FFRCT Planner was accurate in predicting post-PCI FFR independent of CCTA image quality. CLINICAL RELEVANCE STATEMENT: Being accurate in predicting post-PCI FFR across a wide spectrum of CT image quality, the FFRCT Planner could potentially enhance and guide the invasive treatment. Adequate vasodilation during CT acquisition is relevant to improve the accuracy of the FFRCT Planner. KEY POINTS: • The fractional flow reserve derived from coronary CT angiography (FFRCT) Planner is a novel tool able to accurately predict fractional flow reserve after percutaneous coronary intervention. • The accuracy of the FFRCT Planner was confirmed across a wide spectrum of CT image quality. Nitrates dose at CT acquisition was the only independent predictor of its accuracy. • The FFRCT Planner could potentially enhance and guide the invasive treatment.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Angiografia Coronária/métodos , Angiografia por Tomografia Computadorizada/métodos , Estenose Coronária/terapia , Valor Preditivo dos Testes
2.
Interv Cardiol ; 18: e26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125928

RESUMO

The role of coronary CT angiography for the diagnosis and risk stratification of coronary artery disease is well established. However, its potential beyond the diagnostic phase remains to be determined. The current review focuses on the insights that coronary CT angiography can provide when planning and performing percutaneous coronary interventions. We describe a novel approach incorporating anatomical and functional pre-procedural planning enhanced by artificial intelligence, computational physiology and online 3D CT guidance for percutaneous coronary interventions. This strategy allows the individualisation of patient selection, optimisation of the revascularisation strategy and effective use of resources.

5.
Biomedicines ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979892

RESUMO

A 79-year-old male with chronic coronary syndrome with complex coronary artery disease was included in the first-in-man trial of surgical revascularization guided solely by coronary computed tomography angiography (CCTA) and fractional flow reserve derived from CCTA (FFRCT). In CCTA analysis, the patient had calcified three-vessel disease, with a global anatomical SYNTAX score of 27. In contrast, in the initial FFRCT, only the ramus intermediate stenosis was physiologically significant, with no other vessels having an FFRCT ≤ 0.80 (functional SYNTAX score of 2). Discordance between the results of the CCTA and FFRCT necessitated an in-depth analysis by using both invasive and non-invasive coronary angiography. Angiography-derived fractional flow reserve (FFR) confirmed that the stenosis in the proximal left anterior descending artery (LAD) was physiologically significant, while it remained functionally negative in the second assessment of FFRCT. Extensive calcification is the most plausible explanation for the underestimation of the stenosis of proximal LAD in CCTA-derived FFR technology.

6.
Clin Cardiol ; 45(10): 986-994, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36056636

RESUMO

INTRODUCTION: Coronary CT angiography (CTA) derived fractional flow reserve (FFRCT ) shows high diagnostic performance when compared to invasively measured FFR. Presence and extent of low attenuation plaque density have been shown to be associated with abnormal physiology by measured FFR. Moreover, it is well established that statin therapy reduces the rate of plaque progression and results in morphology alterations underlying atherosclerosis. However, the interplay between lipid lowering treatment, plaque regression, and the coronary physiology has not previously been investigated. AIM: To test whether lipid lowering therapy is associated with significant improvement in FFRCT , and whether there is a dose-response relationship between lipid lowering intensity, plaque regression, and coronary flow recovery. METHODS: Investigator driven, prospective, multicenter, randomized study of patients with stable angina, coronary stenosis ≥50% determined by clinically indicated first-line CTA, and FFRCT ≤ 0.80 in whom coronary revascularization was deferred. Patients are randomized to standard (atorvastatin 40 mg daily) or intensive (rosuvastatin 40 mg + ezetimibe 10 mg daily) lipid lowering therapy for 18 months. Coronary CTA scans with blinded coronary plaque and FFRCT analyses will be repeated after 9 and 18 months. The primary endpoint is the 18-month difference in FFRCT using (1) the FFRCT value 2 cm distal to stenosis and (2) the lowest distal value in the vessel of interest. A total of 104 patients will be included in the study. CONCLUSION: The results of this study will provide novel insights into the interplay between lipid lowering, and the pathophysiology in coronary artery disease.


Assuntos
Angina Estável , Reserva Fracionada de Fluxo Miocárdico , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Atorvastatina , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Valor Preditivo dos Testes , Estudos Prospectivos , Rosuvastatina Cálcica , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
7.
JACC Cardiovasc Imaging ; 15(7): 1242-1255, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798401

RESUMO

BACKGROUND: Low fractional flow reserve (FFR) values after percutaneous coronary intervention (PCI) carry a worse prognosis than high post-PCI FFR values. Therefore, the ability to predict post-PCI FFR might play an important role in procedural planning. Post-PCI FFR values can now be computed from pre-PCI coronary computed tomography angiography (CTA) using the fractional flow reserve derived from coronary computed tomography angiography revascularization planner (FFRCT Planner). OBJECTIVES: The aim of this study was to validate the accuracy of the FFRCT Planner. METHODS: In this multicenter, investigator-initiated, prospective study, patients with chronic coronary syndromes and significant lesions based on invasive FFR ≤0.80 were recruited. The FFRCT Planner was applied to the fractional flow reserve derived from coronary computed tomography angiography (FFRCT) model, simulating PCI. The primary objective was the agreement between the predicted post-PCI FFR by the FFRCT Planner and measured post-PCI FFR. Accuracy of the FFRCT Planner's luminal dimensions was assessed by using post-PCI optical coherence tomography as the reference. RESULTS: Overall, 259 patients were screened, with 120 patients (123 vessels) included in the final analysis. The mean patient age was 64 ± 9 years, and 24% had diabetes. Measured FFR post-PCI was 0.88 ± 0.06, and the FFRCT Planner FFR was 0.86 ± 0.06 (mean difference: 0.02 ± 0.07 FFR unit; limits of agreement: -0.12 to 0.15). Optical coherence tomography minimal stent area was 5.60 ± 2.01 mm2, and FFRCT Planner minimal stent area was 5.0 ± 2.2 mm2 (mean difference: 0.66 ± 1.21 mm2; limits of agreement: -1.7 to 3.0). The accuracy and precision of the FFRCT Planner remained high in cases with focal and diffuse disease and with low and high calcium burden. CONCLUSIONS: The FFRCT-based technology was accurate and precise for predicting FFR after PCI. (Precise Percutaneous Coronary Intervention Plan Study [P3]; NCT03782688).


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Intervenção Coronária Percutânea , Idoso , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/terapia , Vasos Coronários/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X
8.
J Cardiovasc Comput Tomogr ; 16(3): 198-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34740557

RESUMO

In the absence of disease impacting the coronary arteries or myocardium, there exists a linear relationship between vessel volume and myocardial mass to ensure balanced distribution of blood supply. This balance may be disturbed in diseases of either the coronary artery tree, the myocardium, or both. However, in contemporary evaluation the coronary artery anatomy and myocardium are assessed separately. Recently the coronary lumen volume to myocardial mass ratio (V/M), measured noninvasively using coronary computed tomography angiography (CTCA), has emerged as an integrated measure of myocardial blood supply and demand in vivo. This has the potential to yield new insights into diseases where this balance is altered, thus impacting clinical diagnoses and management. In this review, we outline the scientific methodology underpinning CTCA-derived measurement of V/M. We describe recent studies describing alterations in V/M across a range of cardiovascular conditions, including coronary artery disease, cardiomyopathies and coronary microvascular dysfunction. Lastly, we highlight areas of unmet research need and future directions, where V/M may further enhance our understanding of the pathophysiology of cardiovascular disease.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes
9.
Clin Cardiol ; 44(4): 446-454, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656754

RESUMO

INTRODUCTION: Fractional flow reserve (FFR) measured after percutaneous coronary intervention (PCI) has been identified as a surrogate marker for vessel related adverse events. FFR can be derived from standard coronary computed tomography angiography (CTA). Moreover, the FFR derived from coronary CTA (FFRCT ) Planner is a tool that simulates PCI providing modeled FFRCT values after stenosis opening. AIM: To validate the accuracy of the FFRCT Planner in predicting FFR after PCI with invasive FFR as a reference standard. METHODS: Prospective, international and multicenter study of patients with chronic coronary syndromes undergoing PCI. Patients will undergo coronary CTA with FFRCT prior to PCI. Combined morphological and functional evaluations with motorized FFR hyperemic pullbacks, and optical coherence tomography (OCT) will be performed before and after PCI. The FFRCT Planner will be applied by an independent core laboratory blinded to invasive data, replicating the invasive procedure. The primary objective is to assess the agreement between the predicted FFRCT post-PCI derived from the Planner and invasive FFR. A total of 127 patients will be included in the study. RESULTS: Patient enrollment started in February 2019. Until December 2020, 100 patients have been included. Mean age was 64.1 ± 9.03, 76% were males and 24% diabetics. The target vessels for PCI were LAD 83%, LCX 6%, and RCA 11%. The final results are expected in 2021. CONCLUSION: This study will determine the accuracy and precision of the FFRCT Planner to predict post-PCI FFR in patients with chronic coronary syndromes undergoing percutaneous revascularization.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Intervenção Coronária Percutânea , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/cirurgia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X
10.
J Biomech Eng ; 141(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029275

RESUMO

Image-based modeling is an active and growing area of biomedical research that utilizes medical imaging to create patient-specific simulations of physiological function. Under this paradigm, anatomical structures are segmented from a volumetric image, creating a geometric model that serves as a computational domain for physics-based modeling. A common application is the segmentation of cardiovascular structures to numerically model blood flow or tissue mechanics. The segmentation of medical image data typically results in a discrete boundary representation (surface mesh) of the segmented structure. However, it is often desirable to have an analytic representation of the model, which facilitates systematic manipulation. For example, the model then becomes easier to union with a medical device, or the geometry can be virtually altered to test or optimize a surgery. Furthermore, to employ increasingly popular isogeometric analysis (IGA) methods, the parameterization must be analysis suitable. Converting a discrete surface model to an analysis-suitable model remains a challenge, especially for complex branched structures commonly encountered in cardiovascular modeling. To address this challenge, we present a framework to convert discrete surface models of vascular geometries derived from medical image data into analysis-suitable nonuniform rational B-splines (NURBS) representation. This is achieved by decomposing the vascular geometry into a polycube structure that can be used to form a globally valid parameterization. We provide several practical examples and demonstrate the accuracy of the methods by quantifying the fidelity of the parameterization with respect to the input geometry.

11.
Cardiovasc Eng Technol ; 9(4): 544-564, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203115

RESUMO

PURPOSE: Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. METHODS: 3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. RESULTS: A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. CONCLUSIONS: Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.


Assuntos
Angiografia Cerebral/métodos , Circulação Cerebrovascular , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento Tridimensional , Aneurisma Intracraniano/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Estresse Mecânico
12.
J Biomech Eng ; 140(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29238826

RESUMO

Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.


Assuntos
Modelos Cardiovasculares , Software , Interface Usuário-Computador , Fluxo de Trabalho , Gráficos por Computador , Imageamento Tridimensional , Imagem Molecular
13.
Ann Biomed Eng ; 45(3): 525-541, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27933407

RESUMO

Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.


Assuntos
Simulação por Computador , Modelos Cardiovasculares , Software , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA