Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Sci Rep ; 11(1): 13081, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158551

RESUMO

African swine fever (ASF) caused by the African swine fever virus (ASFV) is ranked by OIE as the most important source of mortality in domestic pigs globally and is indigenous to African wild suids and soft ticks. Despite two ASFV genotypes causing economically devastating epidemics outside the continent since 1961, there have been no genome-level analyses of virus evolution in Africa. The virus was recently transported from south-eastern Africa to Georgia in 2007 and has subsequently spread to Russia, eastern Europe, China, and south-east Asia with devastating socioeconomic consequences. To date, two of the 24 currently described ASFV genotypes defined by sequencing of the p72 gene, namely genotype I and II, have been reported outside Africa, with genotype II being responsible for the ongoing pig pandemic. Multiple complete genotype II genome sequences have been reported from European, Russian and Chinese virus isolates but no complete genome sequences have yet been reported from Africa. We report herein the complete genome of a Tanzanian genotype II isolate, Tanzania/Rukwa/2017/1, collected in 2017 and determined using an Illumina short read strategy. The Tanzania/Rukwa/2017/1 sequence is 183,186 bp in length (in a single contig) and contains 188 open reading frames. Considering only un-gapped sites in the pairwise alignments, the new sequence has 99.961% identity with the updated Georgia 2007/1 reference isolate (FR682468.2), 99.960% identity with Polish isolate Pol16_29413_o23 (MG939586) and 99.957% identity with Chinese isolate ASFV-wbBS01 (MK645909.1). This represents 73 single nucleotide polymorphisms (SNPs) relative to the Polish isolate and 78 SNPs with the Chinese genome. Phylogenetic analysis indicated that Tanzania/Rukwa/2017/1 clusters most closely with Georgia 2007/1. The majority of the differences between Tanzania/Rukwa/2017/1 and Georgia 2007/1 genotype II genomes are insertions/deletions (indels) as is typical for ASFV. The indels included differences in the length and copy number of the terminal multicopy gene families, MGF 360 and 110. The Rukwa2017/1 sequence is the first complete genotype II genome from a precisely mapped locality in Africa, since the exact origin of Georgia2007/1 is unknown. It therefore provides baseline information for future analyses of the diversity and phylogeography of this globally important genetic sub-group of ASF viruses.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Febre Suína Africana/genética , África/epidemiologia , Febre Suína Africana/virologia , Animais , DNA Viral/genética , Surtos de Doenças/veterinária , Europa (Continente)/epidemiologia , Genoma Viral/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pandemias/veterinária , Filogenia , Análise de Sequência de DNA/métodos , Sus scrofa/genética , Suínos , Sequenciamento Completo do Genoma/métodos
3.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554682

RESUMO

In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined.IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.


Assuntos
Murinae/virologia , Orthopoxvirus/classificação , Orthopoxvirus/isolamento & purificação , Filogenia , Infecções por Poxviridae/virologia , Animais , Genes Virais/genética , Genoma Viral , República da Geórgia , Humanos , Estudos Longitudinais , Orthopoxvirus/genética , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/veterinária , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia
4.
Methods Mol Biol ; 2023: 29-62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240669

RESUMO

In recent years, there have been numerous technological advances in the field of molecular biology; these include next- and third-generation sequencing of DNA genomes and mRNA transcripts and mass spectrometry of proteins. Perhaps, however, it is genome sequencing that impacts a virologist the most. In 2017, more than 480 complete genome sequences of poxviruses have been generated, and are constantly used in many different ways by almost all molecular virologists. Matching this growth in data acquisition is an explosion of the relatively new field of bioinformatics, providing databases to store and organize this valuable/expensive data and algorithms to analyze it. For the bench virologist, access to intuitive, easy-to-use, software is often critical for performing bioinformatics-based experiments. Three common hurdles for the researcher are (1) selection, retrieval, and reformatting genomics data from large databases; (2) use of tools to compare/analyze the genomics data; and (3) display and interpretation of complex sets of results. This chapter is directed at the bench virologist and describes the software that helps overcome these obstacles, with a focus on the comparison and analysis of poxvirus genomes. Although poxvirus genomes are stored in public databases such as GenBank, this resource can be cumbersome and tedious to use if large amounts of data must to be collected. Therefore, we also highlight our Viral Orthologous Clusters database system and integrated tools that we developed specifically for the management and analysis of complete viral genomes.


Assuntos
Biologia Computacional/métodos , Genoma Viral/genética , Poxviridae/genética , Algoritmos , Alinhamento de Sequência , Vaccinia virus/genética
5.
Viruses ; 10(11)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445717

RESUMO

Base-By-Base is a comprehensive tool for the creation and editing of multiple sequence alignments that is coded in Java and runs on multiple platforms. It can be used with gene and protein sequences as well as with large viral genomes, which themselves can contain gene annotations. This report describes new features added to Base-By-Base over the last 7 years. The two most significant additions are: (1) The recoding and inclusion of "consensus-degenerate hybrid oligonucleotide primers" (CODEHOP), a popular tool for the design of degenerate primers from a multiple sequence alignment of proteins; and (2) the ability to perform fuzzy searches within the columns of sequence data in multiple sequence alignments to determine the distribution of sequence variants among the sequences. The intuitive interface focuses on the presentation of results in easily understood visualizations and providing the ability to annotate the sequences in a multiple alignment with analytic and user data.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Vírus/genética , Software
6.
Virus Genes ; 54(6): 756-767, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225673

RESUMO

Members of the Poxviridae family are large, double-stranded DNA viruses that replicate in the cytoplasm of their host cells. The subfamily Chordopoxvirinae contains viruses that infect a wide range of vertebrates including marine mammals within the Balaenidae, Delphinidae, Mustelidae, Odobenidae, Otariidae, Phocidae, and Phocoenidae families. Recently, a novel poxvirus was found in a northern sea otter pup (Enhydra lutris kenyoni) that stranded in Alaska in 2009. The phylogenetic relationships of marine mammal poxviruses are not well established because of the lack of complete genome sequences. The current study sequenced the entire sea otterpox virus Enhydra lutris kenyoni (SOPV-ELK) genome using an Illumina MiSeq sequencer. The SOPV-ELK genome is the smallest poxvirus genome known at 127,879 bp, is 68.7% A+T content, is predicted to encode 132 proteins, and has 2546 bp inverted terminal repeats at each end. Genetic and phylogenetic analyses based on the concatenated amino acid sequences of 7 chorodopoxvirus core genes revealed the SOPV-ELK is 52.5-74.1% divergent from other known chordopoxviruses and is most similar to pteropoxvirus from Australia (PTPV-Aus). SOPV-ELK represents a new chordopoxvirus species and may belong to a novel genus. SOPV-ELK encodes eight unique genes. While the function of six predicted genes remains unknown, two genes appear to function as novel immune-modulators. SOPV-ELK-003 appears to encode a novel interleukin-18 binding protein (IL-18 BP), based on limited sequence and structural similarity to other poxviral IL-18 BPs. SOPV-ELK-035 appears to encode a novel tumor necrosis factor receptor-like (TNFR) protein that may be associated with the depression of the host's antiviral response. Additionally, SOPV-ELK-036 encodes a tumor necrosis factor-like apoptosis-inducing ligand (TRAIL) protein that has previously only been found in PTPV-Aus. The SOPV-ELK genome is the first mustelid poxvirus and only the second poxvirus from a marine mammal to be fully sequenced. Sequencing of the SOPV-ELK genome is an important step in unraveling the position of marine mammal poxviruses within the larger Poxviridae phylogenetic tree and provides the necessary sequence to develop molecular tools for future diagnostics and epidemiological studies.


Assuntos
Genoma Viral , Poxviridae/genética , Sequenciamento Completo do Genoma , Animais , Sequência de Bases , Genômica/métodos , Interleucina-18/química , Interleucina-18/metabolismo , Modelos Moleculares , Anotação de Sequência Molecular , Lontras/virologia , Filogenia , Poxviridae/classificação , Poxviridae/isolamento & purificação , Ligação Proteica , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Methods Mol Biol ; 1704: 401-417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29277875

RESUMO

The field of viral genomic studies has experienced an unprecedented increase in data volume. New strains of known viruses are constantly being added to the GenBank database and so are completely new species with little or no resemblance to our databases of sequences. In addition to this, metagenomic techniques have the potential to further increase the number and rate of sequenced genomes. Besides, it is important to consider that viruses have a set of unique features that often break down molecular biology dogmas, e.g., the flux of information from RNA to DNA in retroviruses and the use of RNA molecules as genomes. As a result, extracting meaningful information from viral genomes remains a challenge and standard methods for comparing the unknown and our databases of characterized sequences may need to be modified. Thus, several bioinformatic approaches and tools have been created to address the challenge of analyzing viral data. In this chapter, we offer descriptions and protocols of some of the most important bioinformatic techniques for comparative analysis of viruses. We also provide comments and discussion on how viruses' unique features can affect standard analyses and how to overcome some of the major sources of problems. Topics include: (1) Clustering of related genomes, (2) Whole genome multiple sequence alignments for small RNA viruses, (3) Protein alignments for marker genes, (4) Analyses based on ortholog groups, and (5) Taxonomic identification and comparisons of viruses from environmental datasets.


Assuntos
Biologia Computacional/métodos , Genoma Viral , Metagenômica , Vírus/genética , Algoritmos , Sequência de Bases , Filogenia , Homologia de Sequência , Software , Vírus/classificação
8.
Virus Res ; 242: 106-121, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958947

RESUMO

Poxviruses have previously been detected in macropods with cutaneous papillomatous lesions, however to date, no comprehensive analysis of a poxvirus from kangaroos has been performed. Here we report the genome sequences of a western grey kangaroo poxvirus (WKPV) and an eastern grey kangaroo poxvirus (EKPV), named for the host species from which they were isolated, western grey (Macropus fuliginosus) and eastern grey (Macropus giganteus) kangaroos. Poxvirus DNA from WKPV and EKPV was isolated and entire coding genome regions determined through Roche GS Junior and Illumina Miseq sequencing, respectively. Viral genomes were assembled using MIRA and SPAdes, and annotations performed using tools available from the Viral Bioinformatics Resource Centre. Histopathology and transmission electron microscopy analysis was also performed on WKPV and its associated lesions. The WKPV and EKPV genomes show 96% identity (nucleotide) to each other and phylogenetic analysis places them on a distinct branch between the established Molluscipoxvirus and Avipoxvirus genera. WKPV and EKPV are 170 kbp and 167 kbp long, containing 165 and 162 putative genes, respectively. Together, their genomes encode up to 47 novel unique hypothetical proteins, and possess virulence proteins including a major histocompatibility complex class II inhibitor, a semaphorin-like protein, a serpin, a 3-ß-hydroxysteroid dehydrogenase/δ 5→4 isomerase, and a CD200-like protein. These viruses also encode a large putative protein (WKPV-WA-039 and EKPV-SC-038) with a C-terminal domain that is structurally similar to the C-terminal domain of a cullin, suggestive of a role in the control of host ubiquitination. The relationship of these viruses to members of the Molluscipoxvirus and Avipoxvirus genera is discussed in terms of sequence similarity, gene content and nucleotide composition. A novel genus within subfamily Chordopoxvirinae is proposed to accommodate these two poxvirus species from kangaroos; we suggest the name, Thylacopoxvirus (thylaco-: [Gr.] thylakos meaning sac or pouch).


Assuntos
Genoma Viral , Macropodidae/virologia , Infecções por Poxviridae/veterinária , Poxviridae/genética , Poxviridae/isolamento & purificação , Animais , Histocitoquímica , Microscopia Eletrônica , Anotação de Sequência Molecular , Filogenia , Poxviridae/classificação , Infecções por Poxviridae/patologia , Infecções por Poxviridae/virologia , Análise de Sequência de DNA
9.
Viruses ; 9(9)2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885569

RESUMO

We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.


Assuntos
Genoma Viral , Vírus da Varíola/genética , Composição de Bases , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Especificidade de Hospedeiro , Orthopoxvirus/genética , Orthopoxvirus/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único , Vírus da Varíola/patogenicidade
10.
Virus Genes ; 53(6): 883-897, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28762208

RESUMO

The genome sequence and annotation of two novel poxviruses, NY_014 and Murmansk, are presented. Despite being isolated on different continents and from different hosts, the viruses are relatively similar, albeit distinct species. The closest known relative of the novel viruses is Yoka poxvirus. Five novel genes were found in these genomes, two of which were MHC class I homologs. Although the core of these genomes was well conserved, the terminal regions showed significant variability with large deletions and surprising evidence of recombination with orthopoxviruses.


Assuntos
Genoma Viral/genética , Poxviridae/genética , Recombinação Genética/genética , DNA Viral/genética , Anotação de Sequência Molecular/métodos , Orthopoxvirus/genética , Filogenia
11.
Virus Genes ; 53(6): 856-867, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28685222

RESUMO

The genome of Eptesipoxvirus (EPTV) is the first poxvirus genome isolated from a microbat. The 176,688 nt sequence, which is believed to encompass the complete coding region of the virus, is 67% A+T and is predicted to encode 191 genes. 11 of these genes have no counterpart in GenBank and are therefore unique to EPTV. The presence of a distantly related ortholog of Vaccinia virus F5L in EPTV uncovered a link with fragmented F5L orthologs in Molluscum contagiosum virus/squirrelpox and clade II viruses. Consistent with the unique position of EPTV approximately mid-point between the orthopoxviruses and the clade II viruses, EPTV has 11 genes that are specific to the orthopoxviruses and 13 genes that are typical, if not exclusive, to the clade II poxviruses. This mosaic nature of EPTV blurs the distinction between the old description of the orthopoxvirus and clade II groups. Genome annotation and characterization failed to find any common virulence genes shared with the other poxvirus isolated from bat (pteropoxvirus); however, EPTV encodes 3 genes that may have been transferred to or from deerpox and squirrelpox viruses; 2 of these, a putative endothelin-like protein and a MHC class I-like protein are likely to have immunomodulatory roles.


Assuntos
Quirópteros/virologia , Poxviridae/genética , Animais , DNA Viral/genética , Genoma Viral/genética , Anotação de Sequência Molecular/métodos , Orthopoxvirus/genética , Vaccinia virus/genética , Proteínas Virais/genética , Virulência/genética
12.
BMC Genomics ; 18(1): 346, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472930

RESUMO

BACKGROUND: Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. RESULTS: Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. CONCLUSION: The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment.


Assuntos
Genoma Viral , Fagos de Pseudomonas/genética , Sequência de Bases , Biofilmes , Códon , Sequência Conservada , Endodesoxirribonucleases/genética , Evolução Molecular , Variação Genética , Mutagênese Insercional , Filogenia , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tropismo Viral
13.
BMC Genomics ; 18(1): 298, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407753

RESUMO

BACKGROUND: Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. pacificus) (SWPV-2). RESULTS: Epidermal pox lesions, liver, and blood samples were examined from A. carneipes and A. pacificus of breeding colonies in eastern Australia. After histopathological confirmation of the disease, PCR screening was conducted for avipoxvirus, circovirus, reticuloendotheliosis virus, and fungal agents. Two samples that were PCR positive for poxvirus were further assessed by next generation sequencing, which yielded complete Shearwaterpox virus (SWPV) genomes from A. pacificus and A. carneipes, both showing the highest degree of similarity with Canarypox virus (98% and 67%, respectively). The novel SWPV-1 complete genome from A. carneipes is missing 43 genes compared to CNPV and contains 4 predicted genes which are not found in any other poxvirus, whilst, SWPV-2 complete genome was deemed to be missing 18 genes compared to CNPV and a further 15 genes significantly fragmented as to probably cause them to be non-functional. CONCLUSION: These are the first avipoxvirus complete genome sequences that infect marine seabirds. In the comparison of SWPV-1 and -2 to existing avipoxvirus sequences, our results indicate that the SWPV complete genome from A. carneipes (SWPV-1) described here is not closely related to any other avipoxvirus genome isolated from avian or other natural host species, and that it likely should be considered a separate species.


Assuntos
Avipoxvirus/genética , Doenças das Aves/virologia , Genoma Viral , Infecções por Poxviridae/diagnóstico , Animais , Organismos Aquáticos/virologia , Austrália , Avipoxvirus/isolamento & purificação , Avipoxvirus/patogenicidade , Aves/classificação , Aves/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Infecções por Poxviridae/virologia , Análise de Sequência de DNA/métodos
14.
Virus Genes ; 53(1): 21-34, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27613417

RESUMO

The complete genomes of a skunkpox, volepox, and raccoonpox virus were sequenced and annotated. Phylogenetic analysis of these genomes indicates that although these viruses are all orthopoxviruses, they form a distinct clade to the other known species. This supports the ancient divergence of the North American orthopoxviruses from other members of the orthopoxviruses. Only two open reading frames appear to be unique to this group of viruses, but a relatively small number of insertions/deletions contribute to the varied gene content of this clade. The availability of these genomes will help determine whether skunkpox and volepox viruses share the characteristics that make raccoonpox a useful vaccine vector.


Assuntos
Genoma Viral , Orthopoxvirus/classificação , Orthopoxvirus/genética , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Animais , Biologia Computacional/métodos , Regulação Viral da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Mutação , América do Norte/epidemiologia , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA
15.
J Gen Virol ; 97(9): 2363-2375, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27389615

RESUMO

The carcass of an Australian little red flying fox (Pteropus scapulatus) which died following entrapment on a fence was submitted to the laboratory for Australian bat lyssavirus exclusion testing, which was negative. During post-mortem, multiple nodules were noted on the wing membranes, and therefore degenerate PCR primers targeting the poxvirus DNA polymerase gene were used to screen for poxviruses. The poxvirus PCR screen was positive and sequencing of the PCR product demonstrated very low, but significant, similarity with the DNA polymerase gene from members of the Poxviridae family. Next-generation sequencing of DNA extracted from the lesions returned a contig of 132 353 nucleotides (nt), which was further extended to produce a near full-length viral genome of 133 492 nt. Analysis of the genome revealed it to be AT-rich with inverted terminal repeats of at least 1314 nt and to contain 143 predicted genes. The genome contains a surprisingly large number (29) of genes not found in other poxviruses, one of which appears to be a homologue of the mammalian TNF-related apoptosis-inducing ligand (TRAIL) gene. Phylogenetic analysis indicates that the poxvirus described here is not closely related to any other poxvirus isolated from bats or other species, and that it likely should be placed in a new genus.


Assuntos
Quirópteros/virologia , Poxviridae/classificação , Poxviridae/isolamento & purificação , Animais , Análise por Conglomerados , DNA Polimerase Dirigida por DNA/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reação em Cadeia da Polimerase , Poxviridae/genética , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética
16.
Clin Infect Dis ; 61(10): 1543-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26243783

RESUMO

BACKGROUND: Human and animal poxvirus infections are being reported with increasing frequency. We describe a challenging case history and treatment of a previously unknown poxvirus rash illness in a renal transplant patient. METHODS: A combination of classical microbiology techniques, including viral culture and electron microscopy, were used to provide initial clinical diagnosis. Subsequent standard polymerase chain reaction assays available in 2001 were noncontributory. Next generation sequencing was used to provide definitive diagnosis. RESULTS: Retrospectively, next generation sequencing methods were used to ultimately provide the definitive diagnosis of a novel poxvirus infection initially identified by electron microscopy. The closest relative of this poxvirus, identified in North America, is a poxvirus collected from a mosquito pool from Central Africa in 1972. CONCLUSIONS: This diagnostic quandary was ultimately solved using next generation DNA sequencing. This article describes the use of classical and next generation diagnostic strategies to identify etiologic agents of emerging infectious diseases and once again demonstrates the susceptibility of immunossupressed patients to novel pathogens. The virus identified is closely related to Yoka virus; these viruses appear to have independently diverged from a common ancestor of all known orthopoxviruses.


Assuntos
Exantema/etiologia , Exantema/patologia , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/patologia , Poxviridae/classificação , Poxviridae/isolamento & purificação , Exantema/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hospedeiro Imunocomprometido , Transplante de Rim , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Filogenia , Infecções por Poxviridae/virologia , Estudos Retrospectivos , Análise de Sequência de DNA , Transplantados , Cultura de Vírus
17.
J Gen Virol ; 96(9): 2806-2821, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26023150

RESUMO

We report here the complete genome sequence of raccoonpox virus (RCNV), a naturally occurring North American poxvirus. This is the first such North American sequence to the best of our knowledge, and the data showed that RCNV forms a new phylogenetic branch between orthopoxviruses and Yoka poxvirus. RCNV shared overall similarity in genome organization with orthopoxviruses, and the proteins in the central conserved region shared approximately 90  % amino acid identity with orthopoxviruses. RCNV proteins shared approximately 81  % amino acid identity with Yokapox virus proteins. RCNV is missing 10 genes normally conserved in orthopoxviruses, most of which are implicated in virulence. These gene deletions may explain the attenuated phenotype of RCNV in mammals. RCNV contained one unique genome region containing approximately 1 kb of DNA sequence that is not present in any reported poxvirus. It contained a unique ORF predicted to encode a protein with a transmembrane domain. RCNV replicates well in mammalian cells, is naturally attenuated and has been shown to be effective as a vaccine vector platform, so we further tested its safety. We showed here that RCNV is substantially more attenuated than even the highly attenuated VACV-A35Del mutant virus in pregnant, nude and severe combined immunodeficient (SCID) mouse models. RCNV was much safer in pregnant mice and was cleared rapidly from tissues, even in immunocompromised animals, whereas the VACV-A35Del mutant retains virulence and persists in tissues. Thus, RCNV is expected to be a superior vaccine vector for infectious diseases and cancer due to its excellent safety profile, reported vaccine efficacy and ability to replicate in mammalian cells.


Assuntos
Genoma Viral , Orthopoxvirus/genética , Orthopoxvirus/patogenicidade , Infecções por Poxviridae/virologia , Animais , Sequência de Bases , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Dados de Sequência Molecular , América do Norte , Fases de Leitura Aberta , Orthopoxvirus/classificação , Orthopoxvirus/imunologia , Filogenia , Infecções por Poxviridae/imunologia , Gravidez , Linfócitos T/imunologia , Linfócitos T/virologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Virulência
18.
Virus Genes ; 50(2): 303-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645905

RESUMO

Twelve complete African swine fever virus (ASFV) genome sequences are currently publicly available and these include only one sequence from East Africa. We describe genome sequencing and annotation of a recent pig-derived p72 genotype IX, and a tick-derived genotype X isolate from Kenya using the Illumina platform and comparison with the Kenya 1950 isolate. The three genomes constitute a cluster that was phylogenetically distinct from other ASFV genomes, but 98-99 % conserved within the group. Vector-based compositional analysis of the complete genomes produced a similar topology. Of the 125 previously identified 'core' ASFV genes, two ORFs of unassigned function were absent from the genotype IX sequence which was 184 kb in size as compared to 191 kb for the genotype X. There were multiple differences among East African genomes in the 360 and 110 multicopy gene families. The gene corresponding to 360-19R has transposed to the 5' variable region in both genotype X isolates. Additionally, there is a 110 ORF in the tick-derived genotype X isolate formed by fusion of 13L and 14L that is unique among ASFV genomes. In future, functional analysis based on the variations in the multicopy families may reveal whether they contribute to the observed differences in virulence between genotpye IX and X viruses.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Genoma Viral , Vírus da Febre Suína Africana/classificação , Animais , Sequência de Bases , Genótipo , Quênia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Suínos
19.
J Gen Virol ; 96(Pt 2): 408-419, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406173

RESUMO

Two strains of African swine fever virus (ASFV), the high-virulence Lisboa60 (L60) and the low-virulence NH/P68 (NHV), which have previously been used in effective immunization/protection studies, were sequenced. Both were isolated in Portugal during the 11-year period after the introduction of ASFV to the European Continent in 1957. The predicted proteins coded by both strains were compared, and where differences were found these were also compared to other strains of known virulence. This highlighted several genes with significant alterations in low-virulence strains of ASFV that may constitute virulence factors, several of which are still uncharacterized regarding their function. Phylogenetic analysis grouped L60 and NHV closest to other P72 genotype I ASFV strains from Europe and West Africa, consistent with the assumed West African origin of all European strains. Interestingly, a relatively lower genomic identity exists between L60 and NHV, both isolated in a similar geographical location 8 years apart, than with other European and west African strains isolated subsequently and in more distant locations. This may reflect the intensive passage in tissue culture, during the early 1960s, of a Portuguese isolate to obtain an attenuated vaccine, which may have led to NHV. This study contributes to a better understanding of the evolution of ASFV, and defines additional potential virulence genes for future studies of pathogenesis towards the development of effective vaccines.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/fisiologia , Genoma Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Animais , Análise por Conglomerados , DNA Viral/genética , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Portugal , Análise de Sequência de DNA , Homologia de Sequência , Suínos , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
20.
BMC Res Notes ; 7: 466, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25053142

RESUMO

BACKGROUND: Large DNA sequence data sets require special bioinformatics tools to search and compare them. Such tools should be easy to use so that the data can be easily accessed by a wide array of researchers. In the past, the use of suffix trees for searching DNA sequences has been limited by a practical need to keep the trees in RAM. Newer algorithms solve this problem by using disk-based approaches. However, none of the fastest suffix tree algorithms have been implemented with a graphical user interface, preventing their incorporation into a feasible laboratory workflow. RESULTS: Suffix Tree Searcher (STS) is designed as an easy-to-use tool to index, search, and analyze very large DNA sequence datasets. The program accommodates very large numbers of very large sequences, with aggregate size reaching tens of billions of nucleotides. The program makes use of pre-sorted persistent "building blocks" to reduce the time required to construct new trees. STS is comprised of a graphical user interface written in Java, and four C modules. All components are automatically downloaded when a web link is clicked. The underlying suffix tree data structure permits extremely fast searching for specific nucleotide strings, with wild cards or mismatches allowed. Complete tree traversals for detecting common substrings are also very fast. The graphical user interface allows the user to transition seamlessly between building, traversing, and searching the dataset. CONCLUSIONS: Thus, STS provides a new resource for the detection of substrings common to multiple DNA sequences or within a single sequence, for truly huge data sets. The re-searching of sequence hits, allowing wild card positions or mismatched nucleotides, together with the ability to rapidly retrieve large numbers of sequence hits from the DNA sequence files, provides the user with an efficient method of evaluating the similarity between nucleotide sequences by multiple alignment or use of Logos. The ability to re-use existing suffix tree pieces considerably shortens index generation time. The graphical user interface enables quick mastery of the analysis functions, easy access to the generated data, and seamless workflow integration.


Assuntos
Algoritmos , DNA/genética , Genoma Humano , Software , Sequência de Bases , Biologia Computacional , DNA/análise , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Vírus de Plantas/genética , Alinhamento de Sequência , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA