Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Angew Chem Int Ed Engl ; 62(1): e202214412, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347766

RESUMO

Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.


Assuntos
Cisteína Endopeptidases , Proteínas , Proteínas/metabolismo , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Ligadura
2.
Sci Rep ; 12(1): 9970, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705644

RESUMO

Solving structural ensembles of flexible biomolecules is a challenging research area. Here, we propose a method to obtain possible structural ensembles of a biomolecule based on small-angle X-ray scattering (SAXS) and molecular dynamics simulations. Our idea is to clip a time series that matches a SAXS profile from a simulation trajectory. To examine its practicability, we applied our idea to a multi-domain protein ER-60 and successfully extracted time series longer than 1 micro second from trajectories of coarse-grained molecular dynamics simulations. In the extracted time series, the domain conformation was distributed continuously and smoothly in a conformational space. Preferred domain conformations were also observed. Diversity among scattering curves calculated from each ER-60 structure was interpreted to reflect an open-close motion of the protein. Although our approach did not provide a unique solution for the structural ensemble of the biomolecule, each extracted time series can be an element of the real behavior of ER-60. Considering its low computational cost, our approach will play a key role to identify biomolecular dynamics by integrating SAXS, simulations, and other experiments.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X , Raios X
3.
Commun Biol ; 5(1): 184, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273347

RESUMO

In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains.


Assuntos
Relógios Circadianos , Cianobactérias , Proteínas de Bactérias/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Espalhamento a Baixo Ângulo
4.
Biophys Physicobiol ; 18: 16-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954079

RESUMO

The distinguished feature of neutron as a scattering probe is an isotope effect, especially the large difference in neutron scattering length between hydrogen and deuterium. The difference renders the different visibility between hydrogenated and deuterated proteins. Therefore, the combination of deuterated protein and neutron scattering enables the selective visualization of a target domain in the complex or a target protein in the multi-component system. Despite of this fascinating character, there exist several problems for the general use of this method: difficulty and high cost for protein deuteration, and control and determination of deuteration ratio of the sample. To resolve them, the protocol of protein deuteration techniques is presented in this report. It is strongly expected that this protocol will offer more opportunity for conducting the neutron scattering studies with deuterated proteins.

5.
Sci Rep ; 11(1): 5655, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707747

RESUMO

Multi-domain proteins (MDPs) show a variety of domain conformations under physiological conditions, regulating their functions through such conformational changes. One of the typical MDPs, ER-60 which is a protein folding enzyme, has a U-shape with four domains and is thought to have different domain conformations in solution depending on the redox state at the active centres of the edge domains. In this work, an aggregation-free small-angle X-ray scattering revealed that the structures of oxidized and reduced ER-60 in solution are different from each other and are also different from those in the crystal. Furthermore, structural modelling with coarse-grained molecular dynamics simulation indicated that the distance between the two edge domains of oxidized ER-60 is longer than that of reduced ER-60. In addition, one of the edge domains has a more flexible conformation than the other.


Assuntos
Simulação de Dinâmica Molecular , Agregados Proteicos , Isomerases de Dissulfetos de Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Humanos , Oxirredução , Domínios Proteicos , Soluções
6.
Sci Rep ; 11(1): 2555, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510404

RESUMO

AlphaB crystallin (αB-crystallin) is a key protein for maintaining the long-term transparency of the eye lens. In the eye lens, αB-crystallin is a "dynamical" oligomer regulated by subunit exchange between the oligomers. To elucidate the unsettled mechanism of subunit exchange in αB-crystallin oligomers, the study was carried out at two different protein concentrations, 28.5 mg/mL (dense sample) and 0.45 mg/mL (dilute sample), through inverse contrast matching small-angle neutron scattering. Interestingly, the exchange rate of the dense sample was the same as that of the dilute sample. From analytical ultracentrifuge measurements, the coexistence of small molecular weight components and oligomers was detected, regardless of the protein concentration. The model proposed that subunit exchange could proceed through the assistance of monomers and other small oligomers; the key mechanism is attaching/detaching monomers and other small oligomers to/from oligomers. Moreover, this model successfully reproduced the experimental results for both dense and dilute solutions. It is concluded that the monomer and other small oligomers attaching/detaching mainly regulates the subunit exchange in αB-crystallin oligomer.

7.
Sci Rep ; 10(1): 21678, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303822

RESUMO

Incoherent quasielastic neutron scattering (iQENS) is a fascinating technique for investigating the internal dynamics of protein. However, low flux of neutron beam, low signal to noise ratio of QENS spectrometers and unavailability of well-established analyzing method have been obstacles for studying internal dynamics under physiological condition (in solution). The recent progress of neutron source and spectrometer provide the fine iQENS profile with high statistics and as well the progress of computational technique enable us to quantitatively reveal the internal dynamic from the obtained iQENS profile. The internal dynamics of two proteins, globular domain protein (GDP) and intrinsically disordered protein (IDP) in solution, were measured with the state-of-the art QENS spectrometer and then revealed with the newly developed analyzing method. It was clarified that the average relaxation rate of IDP was larger than that of GDP and the fraction of mobile H atoms of IDP was also much higher than that of GDP. Combined with the structural analysis and the calculation of solvent accessible surface area of amino acid residue, it was concluded that the internal dynamics were related to the highly solvent exposed amino acid residues depending upon protein's structure.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Estrutura Molecular , Soluções , Análise Espectral/instrumentação , Análise Espectral/métodos , Aminoácidos , Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína , Solventes
8.
Commun Biol ; 3(1): 294, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513995

RESUMO

Currently, a sample for small-angle scattering (SAS) is usually highly purified and looks monodispersed: The Guinier plot of its SAS intensity shows a fine straight line. However, it could include the slight aggregates which make the experimental SAS profile different from the monodispersed one. A concerted method with analytical-ultracentrifugation (AUC) and SAS, named as AUC-SAS, offers the precise scattering intensity of a concerned biomacromolecule in solution even with aggregates as well that of a complex under an association-dissociation equilibrium. AUC-SAS overcomes an aggregation problem which has been an obstacle for SAS analysis and, furthermore, has a potential to lead to a structural analysis for a general multi-component system.


Assuntos
Substâncias Macromoleculares/química , Ovalbumina/química , Espalhamento a Baixo Ângulo , Soroalbumina Bovina/química , Ultracentrifugação/métodos , Animais , Bovinos , Modelos Moleculares , Difração de Raios X
9.
J Biochem ; 168(4): 393-405, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458972

RESUMO

Secretory and membrane proteins synthesized in the endoplasmic reticulum (ER) are folded with intramolecular disulphide bonds, viz. oxidative folding, catalysed by the protein disulphide isomerase (PDI) family proteins. Here, we identified a novel soybean PDI family protein, GmPDIL6. GmPDIL6 has a single thioredoxin-domain with a putative N-terminal signal peptide and an active centre (CKHC). Recombinant GmPDIL6 forms various oligomers binding iron. Oligomers with or without iron binding and monomers exhibited a dithiol oxidase activity level comparable to those of other soybean PDI family proteins. However, they displayed no disulphide reductase and extremely low oxidative refolding activity. Interestingly, GmPDIL6 was mainly expressed in the cotyledon during synthesis of seed storage proteins and GmPDIL6 mRNA was up-regulated under ER stress. GmPDIL6 may play a role in the formation of disulphide bonds in nascent proteins for oxidative folding in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Tolueno/análogos & derivados , Sequência de Aminoácidos , Clonagem Molecular/métodos , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Homologia de Sequência , Tolueno/química , Tolueno/metabolismo
10.
J Biol Chem ; 294(49): 18820-18835, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31685660

RESUMO

In the endoplasmic reticulum (ER), ER oxidoreductin 1 (ERO1) catalyzes intramolecular disulfide-bond formation within its substrates in coordination with protein-disulfide isomerase (PDI) and related enzymes. However, the molecular mechanisms that regulate the ERO1-PDI system in plants are unknown. Reduction of the regulatory disulfide bonds of the ERO1 from soybean, GmERO1a, is catalyzed by enzymes in five classes of PDI family proteins. Here, using recombinant proteins, vacuum-ultraviolet circular dichroism spectroscopy, biochemical and protein refolding assays, and quantitative immunoblotting, we found that GmERO1a activity is regulated by reduction of intramolecular disulfide bonds involving Cys-121 and Cys-146, which are located in a disordered region, similarly to their locations in human ERO1. Moreover, a GmERO1a variant in which Cys-121 and Cys-146 were replaced with Ala residues exhibited hyperactive oxidation. Soybean PDI family proteins differed in their ability to regulate GmERO1a. Unlike yeast and human ERO1s, for which PDI is the preferred substrate, GmERO1a directly transferred disulfide bonds to the specific active center of members of five classes of PDI family proteins. Of these proteins, GmPDIS-1, GmPDIS-2, GmPDIM, and GmPDIL7 (which are group II PDI family proteins) failed to catalyze effective oxidative folding of substrate RNase A when there was an unregulated supply of disulfide bonds from the C121A/C146A hyperactive mutant GmERO1a, because of its low disulfide-bond isomerization activity. We conclude that regulation of plant ERO1 activity is particularly important for effective oxidative protein folding by group II PDI family proteins.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/metabolismo
11.
Sci Rep ; 9(1): 12610, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471544

RESUMO

To understand a biological system, it is important to observe structures of biomolecules in the solution where the system is functionalized. Small-Angle X-ray Scattering coupled with Size Exclusion Chromatography (SEC-SAXS) is one of techniques to selectively observe the target molecules in the multi-component system. However, this technique is believed to be available only with a synchrotron-based SAXS instrument due to requirement of high beam intensity and, therefore, the limitation of the beam time was obstacle to satisfy demands from many bio-researchers. We newly developed Laboratory-based Size exclusion chromatography SAXS System (La-SSS) by utilizing a latest laboratory-based SAXS instrument and finely optimization of the balance between flow rate, cell volume, irradiation time and so on. La-SSS succeeded not only decoupling of target protein(s) from non-specific aggregates but also measurement of each concerned component in a multi-component system. In addition, an option: "stopping mode", which is designed for improving statistics of SAXS profile, realized a high S/N data acquisition for the most interesting protein in a multi-component system. Furthermore, by utilizing a column having small bed volume, the small-scale SEC-SAXS study makes available. Through optimization of instrumental parameters and environments, La-SSS is highly applicable for experimental requirements from various biological samples. It is strongly expected that a La-SSS concept must be a normal option for laboratory-based SAXS in the near future.

12.
Biosci Biotechnol Biochem ; 83(5): 781-793, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712483

RESUMO

For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.


Assuntos
Retículo Endoplasmático/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Dobramento de Proteína , Animais , Humanos , Plantas/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo
13.
Biophys Rev ; 10(2): 435-443, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29204878

RESUMO

Gliadins are well-known wheat grain proteins, particularly important in food science. They were studied as early as the 1700s. Despite their long history, it has been difficult to identify their higher-order structure as they aggregate in aqueous solution. Consequently, most studies have been performed by extracting the proteins in 70% ethanol or dilute acidic solutions. The carboxy-terminal half of α- and γ-gliadins have α-helix-rich secondary structures stabilized with intramolecular disulfide bonds, which are present in either aqueous ethanol or pure water. The amino-terminal-repeat region of α- and γ-gliadins has poly-L-proline II and ß-reverse-turn structures. ω-Gliadins also have poly-L-proline II and ß-reverse-turn structures, but no α-helix structure. The size and shape of gliadin molecules have been determined by assessing a variety of parameters: their sedimentation velocity in the analytical ultracentrifuge, intrinsic viscosity, small-angle X-ray scattering profile, and images of the proteins from scanning probe microscopes such as a tunneling electron microscope and atomic force microscope. Models for gliadins are either rods or prolate ellipsoids whether in aqueous ethanol, dilute acid, or pure water. Recently, gliadins have been shown to be soluble in pure water, and a novel extraction method into pure water has been established. This has made it possible to analyze gliadins in pure water at neutral pH, and permitted the characterization of hydrated gliadins. They formed hierarchical nanoscale structures with internal density fluctuations at high protein concentrations.

14.
FEBS J ; 284(3): 414-428, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27960051

RESUMO

Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. DATABASE: The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. ENZYME: Protein disulfide isomerase: EC 5.3.4.1.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/química , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA Mensageiro/genética , Sequência de Aminoácidos , Clonagem Molecular , Retículo Endoplasmático/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Domínios Proteicos , Sinais Direcionadores de Proteínas , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Glycine max/enzimologia
15.
Plant Physiol ; 170(2): 774-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645455

RESUMO

Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the A': domain among the A: , A': , and B: domains of GmPDIM. A disulfide bond introduced into the active center of the A': domain of GmPDIM was shown to be transferred to the active center of the A: domain of GmPDIM and the A: domain of GmPDIM directly oxidized the active centers of both the A: or A': domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants.


Assuntos
Glycine max/enzimologia , Oxirredutases/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Catálise , Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Oxirredução , Oxirredutases/genética , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Proteínas Recombinantes , Glycine max/genética
16.
J Agric Food Chem ; 63(39): 8715-21, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26365302

RESUMO

Gliadin, one of the major proteins together with glutenin composing gluten, affects the physical properties of wheat flour dough. In this study, nanoscale structures of hydrated gliadins extracted into distilled water were investigated primarily by small-angle X-ray scattering (SAXS) over a wide range of concentrations. Gliadins are soluble in distilled water below 10 wt %. Guinier analyses of SAXS profiles indicate that gliadins are present as monomers together with small amounts of dimers and oligomers in a very dilute solution. The SAXS profiles also indicate that interparticle interference appears above 0.5 wt % because of electrostatic repulsion among gliadin assemblies. Above 15 wt %, gliadins form gel-like hydrated solids. At greater concentrations, a steep upturn appears in the low-q region owing to the formation of large aggregates, and a broad shoulder appears in the middle-q region showing density fluctuation inside. This study demonstrates that SAXS can effectively disclose the nanostructure of hydrated gliadin assemblies.


Assuntos
Gliadina/química , Triticum/química , Espalhamento a Baixo Ângulo , Eletricidade Estática
17.
BMC Plant Biol ; 15: 73, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25849633

RESUMO

BACKGROUND: The major wheat seed proteins are storage proteins that are synthesized in the rough endoplasmic reticulum (ER) of starchy endosperm cells. Many of these proteins have intra- and intermolecular disulfide bonds. In eukaryotes, the formation of most intramolecular disulfide bonds in the ER is thought to be catalyzed by protein disulfide isomerase (PDI) family proteins. The cDNAs that encode eight groups of bread wheat (Triticum aestivum L.) PDI family proteins have been cloned, and their expression levels in developing wheat grains have been determined. The purpose of the present study was to characterize the enzymatic properties of the wheat PDI family proteins and clarify their expression patterns in wheat caryopses. RESULTS: PDI family cDNAs, which are categorized into group I (TaPDIL1Aα, TaPDIL1Aß, TaPDIL1Aγ, TaPDIL1Aδ, and TaPDIL1B), group II (TaPDIL2), group III (TaPDIL3A), group IV (TaPDIL4D), and group V (TaPDIL5A), were cloned. The expression levels of recombinant TaPDIL1Aα, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A in Escherichia coli were established from the cloned cDNAs. All recombinant proteins were expressed in soluble forms and purified. Aside from TaPDIL3A, the recombinant proteins exhibited oxidative refolding activity on reduced and denatured ribonuclease A. Five groups of PDI family proteins were distributed throughout wheat caryopses, and expression levels of these proteins were higher during grain filling than in the late stage of maturing. Localization of these proteins in the ER was confirmed by fluorescent immunostaining of the immature caryopses. In mature grains, the five groups of PDI family proteins remained in the aleurone cells and the protein matrix of the starchy endosperm. CONCLUSIONS: High expression of PDI family proteins during grain filling in the starchy endosperm suggest that these proteins play an important role in forming intramolecular disulfide bonds in seed storage proteins. In addition, these PDI family proteins that remain in the aleurone layers of mature grains likely assist in folding newly synthesized hydrolytic enzymes during germination.


Assuntos
Pão , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Triticum/enzimologia , Clonagem Molecular , Endosperma/metabolismo , Genes de Plantas , Oxirredução , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Amido/metabolismo , Frações Subcelulares/metabolismo , Triticum/genética
18.
FEBS J ; 281(23): 5341-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265152

RESUMO

UNLABELLED: Multiple enzymatic systems can catalyse protein disulfide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. The enzyme quiescin sulfhydryl oxidase (QSOX) catalyses disulfide bond formation in unfolded proteins via the reduction of oxygen. We found two QSOX homologues in the soybean genome database, Glycine max QSOX (GmQSOX)1 and GmQSOX2, which encode proteins composed of an N-terminal signal peptide, a thioredoxin-like domain, an FAD-binding domain, Erv/ALR, and a transmembrane region near the C terminus. We subsequently cloned two GmQSOX1 cDNAs, GmQSOX1a and GmQSOX1b, which may be generated by alternative splicing. The GmQSOX1a, GmQSOX1b and GmQSOX2 mRNA levels increased during seed storage protein synthesis in the cotyledon, and were also upregulated under conditions causing ER stress. Recombinant GmQSOX1 expressed in Escherichia coli formed disulfide bonds on reduced and denatured RNase A, but did not show any refolding activity. The reduced and denatured RNase A was effectively refolded by recombinant GmQSOX1 in the presence of the soybean protein disulfide isomerase family protein GmPDIL-2 in the absence of glutathione redox buffer, suggesting that GmQSOX1 plays a role in protein folding in the ER. DATABASES: The nucleotide sequence data for the GmQSOX1a, GmQSOX1b, GmQSOX2a, GmQSOX2b and glycinin AaB1b cDNAs are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB196647, AB195548, XM-006589586, XM-003536592, and AB113349, respectively.


Assuntos
Dissulfetos/química , Glycine max/enzimologia , Oxirredutases/metabolismo , Sequência de Bases , Ditiotreitol/farmacologia , Dados de Sequência Molecular , Dobramento de Proteína , Ribonuclease Pancreático/metabolismo
19.
Arch Biochem Biophys ; 537(1): 104-12, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827315

RESUMO

Apolipoprotein B100 (apoB), the structural component of very low density lipoproteins (VLDL), is susceptible to misfolding and subsequent degradation by several intracellular pathways. ER-60, which has been implicated in apoB degradation, is a protein disulfide isomerase (PDI) that forms or rearranges disulfide bonds in substrate proteins and also possesses cysteine protease activity. To determine which ER-60 function is important for apoB degradation, adenoviruses encoding wild-type human ER-60 or a mutant form of human ER-60 (C60A, C409A) that lacked cysteine protease activity were overexpressed in HepG2 cells. Overexpression of wild-type ER-60 in HepG2 cells promoted apoB degradation and impaired apoB secretion, but mutant ER-60 overexpression did not. In McArdle RH-7777 cells, VLDL secretion was markedly inhibited following overexpression of wild-type but not mutant ER-60, an effect that could be blocked by oleate treatment. Mutant ER-60 was not trapped on apoB as it was with the control substrate tapasin, suggesting that ER-60's role in apoB degradation is likely unrelated to its protein disulfide isomerase activity. Thus, ER-60 may participate in apoB degradation by acting as a cysteine protease. We postulate that apoB cleavage by ER-60 within the ER lumen could facilitate proteasomal degradation of the C-terminus of translocationally-arrested apoB.


Assuntos
Apolipoproteína B-100/química , Apolipoproteína B-100/metabolismo , Cisteína/química , Cisteína/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Células Hep G2 , Humanos , Ligação Proteica , Relação Estrutura-Atividade
20.
Plant Physiol ; 158(3): 1395-405, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22218927

RESUMO

ß-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean ß-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α'- and α-subunits of ß-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the ß-conglycinin complexes containing the disulfide-linked α'/α-subunits were complexes of more than 720 kD. The α'- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α'/α-subunits residing in different ß-conglycinin hexamers, but the binding of P34 to α'- and α-subunits reduces the linkage between ß-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when ß-conglycinin was expressed under nonreducing conditions.


Assuntos
Antígenos de Plantas/metabolismo , Cotilédone/metabolismo , Globulinas/metabolismo , Glycine max/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Antígenos de Plantas/isolamento & purificação , Western Blotting , Cromatografia em Gel , Dissulfetos/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Globulinas/isolamento & purificação , Complexos Multiproteicos/metabolismo , Concentração Osmolar , Oxirredução , Ligação Proteica , Proteínas de Armazenamento de Sementes/isolamento & purificação , Proteínas de Soja/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA