RESUMO
The conversion of biomass to biofuels presents a solution to one of the largest global challenges of our era, climate change. A critical part of this pipeline is the process of breaking down cellulosic sugars from plant matter to be used by microbes containing biosynthetic pathways that produce biofuels or bioproducts. In this inquiry-based course, students complete a research project that isolates cellulase-producing bacteria from samples collected from the environment. After obtaining isolates, the students characterize the production of cellulases. Students then amplify and sequence the 16S rRNA genes of confirmed cellulase producers and use bioinformatic methods to identify the bacterial isolates. Throughout the course, students learn about the process of generating biofuels and bioproducts through the deconstruction of cellulosic biomass to form monosaccharides from the biopolymers in plant matter. The program relies heavily on active learning and enables students to connect microbiology with issues of sustainability. In addition, it provides exposure to basic microbiology, molecular biology, and biotechnology laboratory techniques and concepts. The described activity was initially developed for the Introductory College Level Experience in Microbiology (iCLEM) program, a research-based immersive laboratory course at the US Department of Energy Joint BioEnergy Institute. Originally designed as an accelerated program for high-potential, low-income, high school students (11th-12th grade), this curriculum could also be implemented for undergraduate coursework in a research-intensive laboratory course at a two- or four-year college or university.
RESUMO
Dental pain, including toothache, is one of the most prevalent types of orofacial pain, causing severe, persistent pain that has a significant negative effect on quality of life, including eating disturbances, mood changes, and sleep disruption. As the primary cause of toothache pain is injury to the uniquely innervated dental pulp, rodent models of this injury provide the opportunity to study neurobiological mechanisms of tissue injury-induced persistent pain. Here we evaluated behavioral changes in mice with a dental pulp injury (DPI) produced by mechanically exposing the pulp to the oral environment. We monitored the daily life behaviors of mice with DPI, including measures of eating, drinking, and movement. During the first 48 hours, the only parameter affected by DPI was locomotion, which was reduced. There was also a significant short-term decrease in the amount of weight gained by DPI animals that was not related to food consumption. As cold allodynia is frequently observed in individuals experiencing toothache pain, we tested whether mice with DPI demonstrate an aversion to drinking cold liquids using a cold-sucrose consumption test. Surprisingly, mice with DPI increased their consumption of sucrose solution, to over 150% of baseline, regardless of temperature. Both the weight loss and increased sucrose intake in the first 2 days of injury were reversed by administration of indomethacin. These findings indicate that enhanced sucrose consumption may be a reliable measure of orofacial pain in rodents, and suggest that alterations in energy expenditure and motivational behaviors are under-recognized outcomes of tooth injury.
Assuntos
Polpa Dentária/lesões , Comportamento de Ingestão de Líquido/fisiologia , Comportamento Alimentar/fisiologia , Transtornos dos Movimentos/etiologia , Odontalgia/complicações , Odontalgia/patologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Peso Corporal/efeitos dos fármacos , Temperatura Baixa/efeitos adversos , Polpa Dentária/patologia , Modelos Animais de Doenças , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Indometacina/farmacologia , Indometacina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/tratamento farmacológico , Estatísticas não Paramétricas , Sacarose/metabolismo , Fatores de Tempo , Odontalgia/tratamento farmacológicoRESUMO
To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal projection neurons. The interneuron loss is associated with a near complete absence of supraspinally integrated pain and itch behaviors, elevated mechanical withdrawal thresholds and loss of nerve injury-induced mechanical hypersensitivity, but reflex responsiveness to noxious heat, nerve injury-induced heat hypersensitivity, and tissue injury-induced heat and mechanical hypersensitivity are intact. We conclude that different subsets of dorsal horn excitatory interneurons contribute to tissue and nerve injury-induced heat and mechanical pain and that the full expression of supraspinally mediated pain and itch behaviors cannot be generated solely by nociceptor and pruritoceptor activation of projection neurons; concurrent activation of excitatory interneurons is essential.
Assuntos
Interneurônios/fisiologia , Dor/genética , Dor/patologia , Prurido/patologia , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Raízes Nervosas Espinhais/patologia , Animais , Morte Celular/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/genética , Hiperalgesia/patologia , Lectinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Oncogênicas v-fos/metabolismo , Limiar da Dor/fisiologia , Fosfopiruvato Hidratase/metabolismo , Prurido/genética , Tempo de Reação/genética , Receptores de Esteroides/deficiência , Receptores dos Hormônios Tireóideos/deficiência , Substância P/metabolismoRESUMO
Despite the impact of chronic pain on the quality of life in patients, including changes to affective state and daily life activities, rodent preclinical models rarely address this aspect of chronic pain. To better understand the behavioral consequences of the tissue and nerve injuries typically used to model neuropathic and inflammatory pain in mice, we measured home cage and affective state behaviors in animals with spared nerve injury, chronic constriction injury (CCI), or intraplantar complete Freund's adjuvant. Mechanical hypersensitivity is prominent in each of these conditions and persists for many weeks. Home cage behavior was continuously monitored for 16 days in a system that measures locomotion, feeding, and drinking, and allows for precise analysis of circadian patterns. When monitored after injury, animals with spared nerve injury and complete Freund's adjuvant behaved no differently from controls in any aspect of daily life. Animals with CCI were initially less active, but the difference between CCI and controls disappeared by 2 weeks after injury. Further, in all pain models, there was no change in any measure of affective state. We conclude that in these standard models of persistent pain, despite the development of prolonged hypersensitivity, the mice do not have significantly altered "quality of life." As alteration in daily life activities is the feature that is so disrupted in patients with chronic pain, our results suggest that the models used here do not fully reflect the human conditions and point to a need for development of a murine chronic pain model in which lifestyle changes are manifest.
Assuntos
Hiperalgesia/etiologia , Inflamação/complicações , Locomoção/fisiologia , Atividade Motora/fisiologia , Ciática/complicações , Atividades Cotidianas , Animais , Ansiedade/etiologia , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transtornos do Humor/etiologia , Medição da DorRESUMO
Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. We report that conditional knockout (cKO) of the Slc17a6 gene encoding VGLUT2 from the great majority of nociceptors profoundly decreased VGLUT2 mRNA and protein in these neurons, and reduced firing of lamina I spinal cord neurons in response to noxious heat and mechanical stimulation. In behavioral assays, cKO mice showed decreased responsiveness to acute noxious heat, mechanical, and chemical (capsaicin) stimuli, but responded normally to cold stimulation and in the formalin test. Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.
Assuntos
Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Temperatura Alta , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Comportamento Animal/efeitos dos fármacos , Capsaicina/farmacologia , Temperatura Baixa , Fixadores/farmacologia , Formaldeído/farmacologia , Hiperalgesia/genética , Camundongos , Camundongos Knockout , Dor/genética , Fármacos do Sistema Sensorial/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/genéticaRESUMO
The function of the cortical microcircuitry is still mysterious. Using a bottom-up analysis based on the biophysics and connectivity of cortical neurons, we propose the hypothesis that the neocortex is essentially a linear integrator of inputs. Dendritic spines would slow the neuron and contribute to linearize input summation. Since excitatory axons are relatively straight, they appeared designed to help disperse information to a large number of recipient neurons, generating a distributed circuit. A linear summation regime will ensure the full benefit of a distributed connectivity matrix. Linear integration could also help the neocortex decode the sensory world and may have additional computational advantages. In this view, spines would be the anatomical signature of linear networks.