Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
ACS Chem Biol ; 18(9): 2039-2049, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582223

RESUMO

Nuclear magnetic resonance (NMR) studies of large biomolecular machines and highly repetitive proteins remain challenging due to the difficulty of assigning frequencies to individual nuclei. Here, we present an efficient strategy to address this challenge by engineering a Pyrococcus horikoshii tRNA/alanyl-tRNA synthetase pair that enables the incorporation of up to three isotopically labeled alanine residues in a site-specific manner using in vitro protein expression. The general applicability of this approach for NMR assignment has been demonstrated by introducing isotopically labeled alanines into four distinct proteins: huntingtin exon-1, HMA8 ATPase, the 300 kDa molecular chaperone ClpP, and the alanine-rich Phox2B transcription factor. For large protein assemblies, our labeling approach enabled unambiguous assignments while avoiding potential artifacts induced by site-specific mutations. When applied to Phox2B, which contains two poly-alanine tracts of nine and twenty alanines, we observed that the helical stability is strongly dependent on the homorepeat length. The capacity to selectively introduce alanines with distinct labeling patterns is a powerful tool to probe structure and dynamics of challenging biomolecular systems.


Assuntos
Alanina , Proteínas , Alanina/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/metabolismo
2.
Structure ; 31(6): 644-650.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119819

RESUMO

Huntington's disease neurodegeneration occurs when the number of consecutive glutamines in the huntingtin exon-1 (HTTExon1) exceeds a pathological threshold of 35. The sequence homogeneity of HTTExon1 reduces the signal dispersion in NMR spectra, hampering its structural characterization. By simultaneously introducing three isotopically labeled glutamines in a site-specific manner in multiple concatenated samples, 18 glutamines of a pathogenic HTTExon1 with 36 glutamines were unambiguously assigned. Chemical shift analyses indicate the α-helical persistence in the homorepeat and the absence of an emerging toxic conformation around the pathological threshold. Using the same type of samples, the recognition mechanism of Hsc70 molecular chaperone has been investigated, indicating that it binds to the N17 region of HTTExon1, inducing the partial unfolding of the poly-Q. The proposed strategy facilitates high-resolution structural and functional studies in low-complexity regions.


Assuntos
Peptídeos , Peptídeos/química , Éxons , Conformação Proteica em alfa-Hélice , Espectroscopia de Ressonância Magnética , Proteína Huntingtina/química
3.
Nat Struct Mol Biol ; 30(3): 309-320, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864173

RESUMO

Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.


Assuntos
Éxons , Proteína Huntingtina/genética , Proteína Huntingtina/química , Espectroscopia de Ressonância Magnética , Conformação Proteica em alfa-Hélice
4.
Biomolecules ; 10(10)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086646

RESUMO

The high-resolution structural study of huntingtin exon-1 (HttEx1) has long been hampered by its intrinsic properties. In addition to being prone to aggregate, HttEx1 contains low-complexity regions (LCRs) and is intrinsically disordered, ruling out several standard structural biology approaches. Here, we use a cell-free (CF) protein expression system to robustly and rapidly synthesize (sub-) pathological HttEx1. The open nature of the CF reaction allows the application of different isotopic labeling schemes, making HttEx1 amenable for nuclear magnetic resonance studies. While uniform and selective labeling facilitate the sequential assignment of HttEx1, combining CF expression with nonsense suppression allows the site-specific incorporation of a single labeled residue, making possible the detailed investigation of the LCRs. To optimize CF suppression yields, we analyze the expression and suppression kinetics, revealing that high concentrations of loaded suppressor tRNA have a negative impact on the final reaction yield. The optimized CF protein expression and suppression system is very versatile and well suited to produce challenging proteins with LCRs in order to enable the characterization of their structure and dynamics.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Agregação Patológica de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Sistema Livre de Células , Éxons/genética , Humanos , Doença de Huntington/patologia , Marcação por Isótopo , Cinética , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos/genética
5.
Structure ; 28(7): 733-746.e5, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402249

RESUMO

The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.


Assuntos
Proteína Huntingtina/química , Proteínas Intrinsicamente Desordenadas/química , Ácido Poliglutâmico/química , Motivos de Aminoácidos , Humanos , Sequências Repetitivas de Aminoácidos
6.
J Am Chem Soc ; 142(17): 7976-7986, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32266815

RESUMO

Proline is found in a cis conformation in proteins more often than other proteinogenic amino acids, where it influences structure and modulates function, being the focus of several high-resolution structural studies. However, until now, technical and methodological limitations have hampered the site-specific investigation of the conformational preferences of prolines present in poly proline (poly-P) homorepeats in their protein context. Here, we apply site-specific isotopic labeling to obtain high-resolution NMR data on the cis/trans equilibrium of prolines within the poly-P repeats of huntingtin exon 1, the causative agent of Huntington's disease. Screening prolines in different positions in long (poly-P11) and short (poly-P3) poly-P tracts, we found that, while the first proline of poly-P tracts adopts similar levels of cis conformation as isolated prolines, a length-dependent reduced abundance of cis conformers is observed for terminal prolines. Interestingly, the cis isomer could not be detected in inner prolines, in line with percentages derived from a large database of proline-centered tripeptides extracted from crystallographic structures. These results suggest a strong cooperative effect within poly-Ps that enhances their stiffness by diminishing the stability of the cis conformation. This rigidity is key to rationalizing the protection toward aggregation that the poly-P tract confers to huntingtin. Furthermore, the study provides new avenues to probe the structural properties of poly-P tracts in protein design as scaffolds or nanoscale rulers.


Assuntos
Prolina/química , Sequência de Aminoácidos , Humanos , Conformação Proteica
7.
Comput Struct Biotechnol J ; 18: 306-313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071707

RESUMO

Polyglutamine (polyQ) regions are one of the most prevalent homorepeats in eukaryotes. It is however difficult to evaluate their prevalence because various studies claim different results. The reason is the lack of a consensus to define what is indeed a polyQ region. We have tackled this issue by studying how the use of different thresholds (i.e., minimum number of glutamines required in a protein region of a given size), to detect polyQ regions in the human proteome influences not only their prevalence but also their general features and sequence context. Threshold definition shapes the length distribution of the polyQ dataset, and changes the observed number and position of impurities (amino acids other than glutamine) within polyQ regions. Irrespective of the chosen threshold, leucine and proline residues are enriched both within and around polyQ. While leucine is enriched at the N-terminus of polyQ and specially at position -1 (amino acid preceding the polyQ), proline is prevalent in the C-terminus (positions +1 to +5, that is, the first five amino acids after the polyQ). We also checked the suitability of these thresholds for other species, and compared their polyQ features with those found in humans. As the sequence context and features of polyQ regions are threshold-dependent, we propose a method to quickly scan the polyQ landscape of a proteome. We complement our results with a summarized overview about which biases are to be expected per threshold when studying polyQ regions.

8.
Brief Bioinform ; 21(2): 458-472, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698641

RESUMO

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. SHORT ABSTRACT: There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.


Assuntos
Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Conformação Proteica , Domínios Proteicos
9.
Chembiochem ; 21(6): 769-775, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31697025

RESUMO

Remarkable technical progress in the area of structural biology has paved the way to study previously inaccessible targets. For example, large protein complexes can now be easily investigated by cryo-electron microscopy, and modern high-field NMR magnets have challenged the limits of high-resolution characterization of proteins in solution. However, the structural and dynamic characteristics of certain proteins with important functions still cannot be probed by conventional methods. These proteins in question contain low-complexity regions (LCRs), compositionally biased sequences where only a limited number of amino acids is repeated multiple times, which hamper their characterization. This Concept article describes a site-specific isotopic labeling (SSIL) strategy, which combines nonsense suppression and cell-free protein synthesis to overcome these limitations. An overview on how poly-glutamine tracts were made amenable to high-resolution structural studies is used to illustrate the usefulness of SSIL. Furthermore, we discuss the potential of this methodology to give further insights into the roles of LCRs in human pathologies and liquid-liquid phase separation, as well as the challenges that must be addressed in the future for the popularization of SSIL.


Assuntos
Marcação por Isótopo , Proteínas/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica
10.
Angew Chem Int Ed Engl ; 57(14): 3598-3601, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29359503

RESUMO

Homorepeat (HR) proteins are involved in key biological processes and multiple pathologies, however their high-resolution characterization has been impaired due to their homotypic nature. To overcome this problem, we have developed a strategy to isotopically label individual glutamines within HRs by combining nonsense suppression and cell-free expression. Our method has enabled the NMR investigation of huntingtin exon1 with a 16-residue polyglutamine (poly-Q) tract, and the results indicate the presence of an N-terminal α-helix at near neutral pH that vanishes towards the end of the HR. The generality of the strategy was demonstrated by introducing a labeled glutamine into a pathological version of huntingtin with 46 glutamines. This methodology paves the way to decipher the structural and dynamic perturbations induced by HR extensions in poly-Q-related diseases. Our approach can be extended to other amino acids to investigate biological processes involving proteins containing low-complexity regions (LCRs).

11.
Adv Exp Med Biol ; 1009: 107-129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218556

RESUMO

Intrinsically Disordered Proteins (IDPs) are fundamental actors of biological processes. Their inherent plasticity facilitates very specialized tasks in cell regulation and signalling, and their malfunction is linked to severe pathologies. Understanding the functional role of disorder requires the structural characterization of IDPs and the complexes they form. Small-angle Scattering of X-rays (SAXS) and Neutrons (SANS) have notably contributed to this structural understanding. In this review we summarize the most relevant developments in the field of SAS studies of disordered proteins. Emphasis is given to ensemble methods and how SAS data can be combined with computational approaches or other biophysical information such as NMR. The unique capabilities of SAS enable its application to extremely challenging disordered systems such as low-complexity regions, amyloidogenic proteins and transient biomolecular complexes. This reinforces the fundamental role of SAS in the structural and dynamic characterization of this elusive family of proteins.


Assuntos
Proteínas Amiloidogênicas/ultraestrutura , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Modelos Moleculares , Espalhamento a Baixo Ângulo , Proteínas Amiloidogênicas/química , Simulação por Computador , Humanos , Proteínas Intrinsicamente Desordenadas/química , Difração de Nêutrons/instrumentação , Difração de Nêutrons/métodos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Difração de Raios X/métodos
12.
Curr Opin Struct Biol ; 42: 15-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27794210

RESUMO

Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the application of traditional structural approaches, and new tools and concepts are being developed to address the challenges they pose. Small-Angle Scattering (SAS) is a structural biology technique that probes the size and shape of disordered proteins and their complexes with other biomolecules. The low-resolution nature of SAS can be compensated with specially designed computational tools and its combined interpretation with complementary structural information. In this review, we describe recent advances in the application of SAS to disordered proteins and highly flexible complexes and discuss current challenges.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Espalhamento a Baixo Ângulo , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
13.
Biochem J ; 466(1): 55-68, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378054

RESUMO

Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. In the present study, we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK (human embryonic kidney)-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readouts, Grem1 consistently demonstrated a higher affinity for BMP-2>BMP-4>BMP-7. Cell-associated Grem1 did not inhibit BMP-2- or BMP-4-mediated signalling, suggesting that Grem1-BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Túbulos Renais Proximais/citologia , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Ressonância de Plasmônio de Superfície
14.
J Virol ; 88(5): 2584-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352439

RESUMO

UNLABELLED: Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of ß-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE: The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.


Assuntos
Produtos do Gene pol/biossíntese , Produtos do Gene pol/química , Vírus da Hepatite B/enzimologia , Algoritmos , Dicroísmo Circular , Produtos do Gene pol/isolamento & purificação , Vírus da Hepatite B/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA