Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579182

RESUMO

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Assuntos
Antifúngicos , Compostos de Bifenilo , Clotrimazol , Propilenoglicóis , Clotrimazol/química , Antifúngicos/química , Disponibilidade Biológica , Solubilidade , Água , Comprimidos
2.
ACS Appl Mater Interfaces ; 16(12): 14605-14625, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488848

RESUMO

In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.


Assuntos
Nifuratel , Neoplasias do Colo do Útero , Feminino , Humanos , Micelas , Neoplasias do Colo do Útero/tratamento farmacológico , Hidrogéis/química , Clotrimazol , Portadores de Fármacos/química , Polietilenoglicóis/química
3.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959728

RESUMO

Polymers, including non-linear copolymers, have great potential in the development of drug delivery systems with many advantages, but the design requires optimizing polymer-drug interactions. Molecular dynamics (MD) simulations can provide insights into polymer-drug interactions for designing delivery systems, but mimicking formulation processes such as drying is often not included in in silico studies. This study demonstrates an MD approach to model drying of systems comprising either hydrophilic tinidazole or hydrophobic clotrimazole drugs with amphiphilic hyperbranched copolyethers. The simulated drying protocol was critical for elucidating drug encapsulation and binding mechanisms. Experimentally, two polymers were synthesized and shown to encapsulate clotrimazole with up to 83% efficiency, guided by interactions with the hydrophobic core observed in simulations. In contrast, tinidazole is associated with surface regions, indicating capacity differences between drug types. Overall, this work highlights MD simulation of the drying process as an important tool for predicting drug-polymer complex behaviour. The modelled formulation protocol enabled high encapsulation efficiency and opened possibilities for the design of delivery systems based on computationally derived binding mechanisms. This demonstrates a computational-experimental approach where simulated drying was integral to elucidating interactions and developing optimized complexes, emphasizing the value of molecular modelling for the development of drug delivery formulations.


Assuntos
Micelas , Simulação de Dinâmica Molecular , Tinidazol , Clotrimazol , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química , Polietilenoglicóis/química
4.
J Mater Chem B ; 11(24): 5552-5564, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877094

RESUMO

Clotrimazole, a hydrophobic drug routinely used in the treatment of vaginal candidiasis, also shows antitumor activity. However, its use in chemotherapy has been unsuccessful to date due to its low solubility in aqueous media. In this work, new unimolecular micelles based on polyether star-hyperbranched carriers of clotrimazole are presented that can enhance solubility, and consequently the bioavailability, of clotrimazole in water. The amphiphilic constructs consisting of a hydrophobic poly(n-alkyl epoxide) core and hydrophilic corona of hyperbranched polyglycidol were synthesized in a three-step anionic ring-opening polymerization of epoxy monomers. The synthesis of such copolymers, however, was only possible by incorporating a linker to facilitate the elongation of the hydrophobic core with glycidol. Unimolecular micelles-clotrimazole formulations displayed significantly increased activity against human cervical cancer HeLa cells compared to the free drug, along with a weak effect on the viability of the normal dermal microvascular endothelium cells HMEC1. This selective activity of clotrimazole on cancer cells with little effect on normal cells was a result of the fact that clotrimazole targets the Warburg effect in cancer cells. Flow cytometric analysis revealed that the encapsulated clotrimazole significantly blocks the progression of the HeLa cycle in the G0/G1 phase and induces apoptosis. In addition, the ability of the synthesized amphiphilic constructs to form a dynamic hydrogel was demonstrated. Such a gel facilitates the delivery of drug-loaded single-molecule micelles to the affected area, where they can form a continuous, self-healing layer.


Assuntos
Clotrimazol , Micelas , Humanos , Clotrimazol/farmacologia , Células HeLa , Polímeros/química
5.
Biomacromolecules ; 23(3): 948-959, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34986638

RESUMO

Dynamic hydrogels with thermosensitive cross-links are highly promising platforms for "on-demand" drug delivery systems. However, there is a problem with triggering a response in their whole volume, which reduces their efficiency. To achieve better thermoresponsiveness, a graphene oxide-filled composite hydrogel based on boronic ester cross-links, composed of hyperbranched polyglycidol, HbPGL, and poly(acrylamide-ran-2-acrylamidephenylboronic acid), poly(AM-ran-2-AAPBA), has been constructed. The homogeneous embedment of graphene oxide (GO) in the network assured near-infrared (NIR)-photothermal response in its bulk due to the rapid light-to-heat conversion. The rate and amplitude of materials response increase with graphene oxide concentration. The temperature of the hydrogel containing graphene oxide at a concentration of 13.2 mg/mL increased from 36.6 to 41 °C in 29 s upon NIR irradiation. The network diffusivity and the extent of its change with temperature can be regulated by the length of the applied boronic acid-based cross-linking agent. The hydrogel constructed on the shorter copolymer (Mn = 23 000 g/mol) displayed a significant increase in diffusivity with temperature. A diffusion ordered NMR study revealed that the diffusion coefficient determined for niacin, a model drug encapsulated in the hydrogel, increased from 6.09 × 10-10 at 25 °C to 1.28 × 10-9 m2/s at 41 °C. In the case of the hydrogel constructed on the longer acrylamide copolymer (Mn = 43 000 g/mol), in which physical entanglements stabilize the network, the change of encapsulated niacin diffusion coefficient was significantly smaller, i.e., from 3.83 × 10-10 at 25 °C to 6.63 × 10-10 m2/s at 41 °C. The possibility of on-demand NIR-regulated diffusivity of the reported boronic ester-based hydrogels makes them promising candidates for controlled drug delivery platforms.


Assuntos
Hidrogéis , Niacina , Acrilamida , Boro , Ésteres , Hidrogéis/química , Polímeros/química
6.
Chempluschem ; 84(7): 981-988, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31943978

RESUMO

The formation of polymer supramolecular networks exhibiting selective sensitivity toward a narrow class of organic compounds is still a significant challenge within the area of reversibly cross-linked materials. Glycoluril molecular clips are U-shaped molecules, which, besides the ability to undergo self-sorting homodimerization, exhibit selectively high molecular recognition of dihydroxyaromatic species. A glycoluril clip diol was introduced into a polymer backbone by using standard polyurethane chemistry. Immobilization of the molecular clip along the polyurethane macromolecule (Glyc Clip-polyurethane) was shown to preserve the native association properties of the clip. Clip motifs embedded in macromolecules form homodimer cross-links in CHCl3 and the resulting structures have a thermoresponsive character. The strength of homodimerization Khomodimer varies from 7.74 104  l mol-1 at 265 K to 9.47 102  l mol-1 at 315 K. A 30 wt % solution of Glyc Clip-polyurethane undergoes gelation at room temperature and exhibits a constant elastic modulus, approximately 3.1 ⋅ 104  Pa, in the broad investigated frequency range. The obtained organogels exhibit selective chemoresponsive properties in the presence of resorcinol, which was demonstrated with 1 H high-resolution magic-angle-spinning NMR spectroscopy and rheological measurements.

7.
Soft Matter ; 14(39): 7945-7949, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226247

RESUMO

We present an unexpected self-assembly of a glycoluril clip-poly(ε-caprolactone) conjugate in chloroform. The conjugate forms homodimer aggregates due to supramolecular interactions between glycoluril moieties, which was confirmed with MALDI-TOF-ms and 1H NMR. TEM revealed the formation of multilayered nanosized prism-shaped objects resembling tree bark in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA