Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826402

RESUMO

The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na + gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. We mechanistically classify the molecular phenotypes of six mutations. C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. G219R, S427L, and L488P are hampered by low protein expression, ER retention, and reduced transport. Mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. These experiments provide a comprehensive understanding of the mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different treatment approaches to either restore transport function, or enable correction of protein folding defects. Summary: Loss-of-function mutations in the SLC13A5 causes SLC13A5-Epilepsy, a devastating disease characterized by neonatal epilepsy. Currently no cure is available. We clarify the molecular-level defects to guide future developments for phenotype-specific treatment of disease-causing mutations.

2.
Elife ; 122024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259172

RESUMO

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Translocação Genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Mutação
3.
Front Mol Biosci ; 10: 1141081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911528

RESUMO

P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.

4.
Methods Mol Biol ; 2507: 337-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773591

RESUMO

Normal functions of cell-surface proteins are dependent on their proper trafficking from the site of synthesis to the cell surface. Transport proteins mediating solute transfer across the plasma membrane constitute an important group of cell-surface proteins. There are several diseases resulting from mutations in these proteins that interfere with their transport function or trafficking, depending on the impact of the mutations on protein folding and structure. Recent advances in successful treatment of some of these diseases with small molecules which correct the mutations-induced folding and structural changes underline the need for detailed structural and biophysical characterization of membrane proteins. This requires methods to express and purify these proteins using heterologous expression systems. Here, using the solute carrier (SLC) transporter NaCT (Na+-coupled citrate transporter) as an example, we describe experimental strategies for this approach. We chose this example because several mutations in NaCT, distributed throughout the protein, cause a severe neurologic disease known as early infantile epileptic encephalopathy-25 (EIEE-25). NaCT was modified with various peptide tags, including a RGS-His10, a Twin-Strep, the SUMOstar domain, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. When transiently expressed in HEK293 cells, recombinant NaCT proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited citrate transport activity similar to the nontagged protein. Surface NaCT expression was enhanced by the presence of SUMOstar on the N-terminus. The dual-purpose peptide epitopes RGS-His10 and Twin-Strep facilitated detection of NaCT by immunohistochemistry and western blot and may serve useful tags for affinity purification. This approach sets the stage for future analyses of mutant NaCT proteins that may alter protein folding and trafficking. It also demonstrates the capability of a transient mammalian cell expression system to produce human NaCT of sufficient quality and quantity to augment future biophysical and structural studies and drug discovery efforts.


Assuntos
Simportadores , Animais , Transporte Biológico , Membrana Celular/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Simportadores/genética
5.
Cold Spring Harb Protoc ; 2021(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853120

RESUMO

Most analytical electrophoreses of proteins are achieved by separation in polyacrylamide gels under conditions that ensure dissociation of proteins into individual polypeptide subunits and minimize aggregation. Most commonly, the anionic detergent sodium dodecyl sulfate (SDS) is used in combination with a reducing agent (ß-mercaptoethanol or dithiothreitol) and with heating to dissociate proteins before loading onto the gel. SDS binding denatures the polypeptides and imparts a negative charge that masks their intrinsic charge. The amount of SDS bound is generally sequence-independent and proportional to molecular weight; at saturation, approximately one SDS molecule is bound per two amino acids, or ∼1.4 g of SDS per gram of polypeptide. Therefore, the migration of SDS-polypeptide complexes in an electric field is proportional to the relative size of the polypeptide chain, and its molecular weight can be estimated by comparison to protein markers of known molecular weight. However, hydrophobicity, highly charged sequences, and certain posttranslational modifications such as glycosylation or phosphorylation may also influence migration. Thus, the apparent molecular weight of modified proteins does not always accurately reflect the mass of the polypeptide chain. This protocol describes preparation and running of SDS-PAGE gels, followed by staining to detect proteins using Coomassie Brilliant Blue. Finally, the stained SDS-PAGE gel may be scanned to an image or preserved by drying.


Assuntos
Peptídeos , Proteínas , Eletroforese em Gel de Poliacrilamida , Géis , Peso Molecular , Proteínas/química , Dodecilsulfato de Sódio
6.
Cold Spring Harb Protoc ; 2021(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853121

RESUMO

Many variations of the original Coomassie Brilliant Blue staining procedure are in use. This protocol describes some selected variations on the standard procedure that give comparable and consistent staining results for proteins in the 20- to 200-kDa range.


Assuntos
Eletroforese em Gel de Poliacrilamida , Resinas Acrílicas , Corantes de Rosanilina , Dodecilsulfato de Sódio , Coloração e Rotulagem
7.
Cold Spring Harb Protoc ; 2021(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853122

RESUMO

This protocol describes silver staining procedures to detect low-abundance proteins in sodium dodecyl sulfate-polyacrylamide gels.


Assuntos
Sais , Prata , Resinas Acrílicas , Eletroforese em Gel de Poliacrilamida , Coloração pela Prata/métodos , Dodecilsulfato de Sódio , Coloração e Rotulagem
8.
Cold Spring Harb Protoc ; 2021(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853123

RESUMO

In immunoblotting (western blotting), proteins are first separated by SDS-PAGE and then transferred electrophoretically from the gel onto a support membrane that binds proteins tightly. After the unreacted binding sites of the membrane are blocked to suppress nonspecific adsorption of antibodies, the immobilized proteins are reacted with a specific polyclonal or monoclonal antibody. Antigen-antibody complexes are visualized using chromogenic, fluorescent, or chemiluminescent reactions. Immunoblotting protocols are reagent specific and, owing to the wide assortment of equipment, reagents, and antibodies available, highly diverse. Presented here is an example of a workable protocol for developing a blot using horseradish peroxidase (HRP)-conjugated secondary antibody and enhanced chemiluminescence (ECL). ECL is based on the emission of light during the HRP-catalyzed oxidation of luminal or other substrates. Emitted light is captured on film or by a CCD camera, for qualitative or semiquantitative analysis. Because ECL is so sensitive, it has become a popular detection method. This protocol can be modified for different membranes, antibodies, and detection systems. Optimal dilutions of the primary and secondary antibodies need to be determined empirically, but recommendations provided by the manufacturer are usually a good starting point.


Assuntos
Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Western Blotting , Peroxidase do Rábano Silvestre , Immunoblotting , Indicadores e Reagentes , Coloração e Rotulagem
9.
Metabolites ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677384

RESUMO

INDY (I'm Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2- in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2-. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues.

10.
Biochem J ; 478(11): 2051-2057, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34101804

RESUMO

NaCT (SLC13A5) is a Na+-coupled transporter for citrate, which is expressed in the liver, brain, testes, and bone. It is the mammalian homolog of Drosophila INDY, a cation-independent transporter for citrate, whose partial loss extends lifespan in the organism. In humans, loss-of-function mutations in NaCT cause a disease with severe neurological dysfunction, characterized by neonatal epilepsy and delayed brain development. In contrast with humans, deletion of NaCT in mice results in a beneficial metabolic phenotype with protection against diet-induced obesity and metabolic syndrome; the brain dysfunction is not readily noticeable. The disease-causing mutations are located in different regions of human NaCT protein, suggesting that different mutations might have different mechanisms for the loss of function. The beneficial effects of NaCT loss in the liver versus the detrimental effects of NaCT loss in the brain provide an opportunity to design high-affinity inhibitors for the transporter that do not cross the blood-brain barrier so that only the beneficial effects could be harnessed. To realize these goals, we need a detailed knowledge of the 3D structure of human NaCT. The recent report by Sauer et al. in Nature describing the cryo-EM structure of human NaCT represents such a milestone, paving the way for a better understanding of the structure-function relationship for this interesting and clinically important transporter.


Assuntos
Simportadores , Animais , Transporte Biológico , Encéfalo/metabolismo , Ácido Cítrico , Microscopia Crioeletrônica , Transportadores de Ácidos Dicarboxílicos/genética , Humanos , Masculino , Camundongos , Mutação , Simportadores/genética
11.
Cold Spring Harb Protoc ; 2021(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526417

RESUMO

Many Escherichia coli expression vectors make use of the lac operon. In general, the lac operator (lacO) is located downstream from the promoter of the target gene, so that binding of the lac repressor blocks transcription initiation until lactose or the isopropyl-ß-d-thiogalactopyranoside (IPTG) analog is added. The protocol given here is intended for use with IPTG-inducible vectors. l-Arabinose-inducible systems derived from the ara operon offer an alternative to expression systems based on the lac operon; guidance for their use is also provided.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Isopropiltiogalactosídeo/farmacologia , Regiões Promotoras Genéticas , DNA Recombinante/genética , Escherichia coli/efeitos dos fármacos , Vetores Genéticos/metabolismo , Proteínas Recombinantes/metabolismo , Solubilidade
12.
Cold Spring Harb Protoc ; 2021(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526418

RESUMO

For expression of some proteins in Escherichia coli, export to the periplasmic space is preferred over conventional expression in the cytosol. Export can be accomplished by fusing the coding sequence to DNA encoding a signal peptide (e.g., using pET-22b), which is cleaved by the bacterial signal peptidase as the protein is exported into the space between the inner and outer membranes of E. coli This protocol uses osmotic shock to release polypeptides from the periplasm. Although not quantitative, it should provide preliminary information on the cellular location of signal peptide fusion proteins.


Assuntos
Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Clonagem Molecular , Transporte Proteico , Esferoplastos/metabolismo , Frações Subcelulares/metabolismo
13.
Cold Spring Harb Protoc ; 2021(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526419

RESUMO

Recovery of intracellular proteins requires disruption of the host cell before the target protein is extracted and isolated. For cells enveloped in cell walls (such as Escherichia coli), vigorous methods are often required. This protocol focuses on E. coli lysis by sonication. Also included are methods for lysis by freeze-thaw and enzymatic treatments.


Assuntos
Escherichia coli/metabolismo , Proteínas Recombinantes/isolamento & purificação , Sonicação/métodos , Extratos Celulares , Fracionamento Celular , Congelamento , Muramidase/metabolismo , Solubilidade , Sonicação/instrumentação
14.
Cold Spring Harb Protoc ; 2021(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526420

RESUMO

The expression of foreign proteins at high levels in Escherichia coli often results in the formation of cytoplasmic granules or inclusion bodies composed of insoluble aggregates of the expressed protein. These inclusion bodies can be seen with a phase-contrast microscope and are readily separated from most soluble and membrane-bound bacterial proteins, as described in this protocol.


Assuntos
Fracionamento Celular/métodos , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/metabolismo , Redobramento de Proteína , Proteínas Recombinantes/química , Solubilidade
15.
Cold Spring Harb Protoc ; 2021(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397779

RESUMO

Pichia pastoris is a methylotrophic yeast capable of metabolizing methanol as its sole carbon source. Growth in methanol-containing medium results in dramatic induction of genes in the alcohol oxidation pathway including alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD), and dihydroxyacetone synthase (DHAS). These proteins may comprise up to 30% of the biomass. Investigators have exploited these methanol-dependent genes to generate tightly regulated expression vectors. Most Pichia vectors use the strong and tightly regulated AOX1 promoter to drive heterologous protein expression. Obtaining integrated Pichia transformants requires more DNA than transformations into Saccharomyces cerevisiae, where the gene is expressed from episomal plasmids; however, transformants are extremely stable and can be stored for many years.


Assuntos
Clonagem Molecular/métodos , Regulação Fúngica da Expressão Gênica , Metanol/química , Pichia/genética , Regiões Promotoras Genéticas , Fracionamento Celular , DNA/genética , Eletroporação , Recombinação Homóloga/genética , Plasmídeos/genética , Proteínas Recombinantes/genética , Transformação Genética
16.
Cold Spring Harb Protoc ; 2021(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397780

RESUMO

Recovery of intracellular proteins requires disruption of the host cell before the target protein is extracted and isolated. Disruption methods vary depending on the type of cells, the total volume, and the number of samples being processed. For cells enveloped in cell walls (such as yeast), mild techniques such as hypotonic shock are not sufficient to achieve adequate lysis. More vigorous methods are often required. Although the preferred medium- or large-scale method of breaking yeast cells is mechanical shearing, lysis with the aid of glass beads in a BeadBeater is described here.


Assuntos
Extratos Celulares/química , Pichia/metabolismo , Proteínas Recombinantes/isolamento & purificação , Ácidos , Microesferas , Pichia/citologia
17.
Cold Spring Harb Protoc ; 2021(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397781

RESUMO

Isolating membrane proteins from their native cells while maintaining structural and functional integrity is challenging. Many detergents have been developed over the years that interact favorably with membrane proteins and mimic the physical properties of the lipid bilayer. Choosing the appropriate detergent is crucial for the successful extraction of a protein in its properly folded, active conformation.


Assuntos
Bioquímica/métodos , Proteínas de Membrana/isolamento & purificação , Detergentes/química , Proteínas de Membrana/química , Solubilidade
18.
Cold Spring Harb Protoc ; 2021(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272973

RESUMO

Obtaining high quantities of a specific protein directly from native sources is often challenging, particularly when dealing with human proteins. To overcome this obstacle, many researchers take advantage of heterologous expression systems by cloning genes into artificial vectors designed to operate within easily cultured cells, such as Escherichia coli, Pichia pastoris (yeast), and several varieties of insect and mammalian cells. Heterologous expression systems also allow for easy modification of the protein to optimize expression, mutational analysis of specific sites within the protein and facilitate their purification with engineered affinity tags. Some degree of purification of the target protein is usually required for functional analysis. Purification to near homogeneity is essential for characterization of protein structure by X-ray crystallography or nuclear magnetic resonance (NMR) and characterization of the biochemical and biophysical properties of a protein, because contaminating proteins almost always adversely affect the results. Methods for producing and purifying proteins in several different expression platforms and using a variety of vectors are introduced here.


Assuntos
Clonagem Molecular/métodos , Proteínas/genética , Proteínas/isolamento & purificação , Expressão Gênica , Vetores Genéticos/metabolismo , Proteômica , Proteínas Recombinantes de Fusão/metabolismo
19.
Chem Rev ; 121(9): 5359-5377, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040525

RESUMO

NaCT (SLC13A5; mINDY), a sodium-coupled citrate transporter, is the mammalian ortholog of Drosophila INDY. Loss-of-function mutations in human NaCT cause severe complications with neonatal epilepsy and encephalopathy (EIEE25). Surprisingly, mice lacking this transporter do not have this detrimental brain phenotype. The marked differences in transport kinetics between mouse and human NaCTs provide at least a partial explanation for this conundrum, but a structural basis for the differences is lacking. Neither human nor mouse NaCT has been crystallized, and any information known on their structures is based entirely on what was inferred from the structure of VcINDY, a related transporter in bacteria. Here, we highlight the functional features of human and mouse NaCTs and provide a plausible molecular basis for the differences based on a full-length homology modeling approach. The transport characteristics of human NaCT markedly differ from those of VcINDY. Therefore, the modeling with VcINDY as the template is flawed, but this is the best available option at this time. With the newly deduced model, we determined the likely locations of the disease-causing mutations and propose a new classification for the mutations based on their location and potential impact on transport function. This new information should pave the way for future design and development of novel therapeutics to restore the lost function of the mutant transporters as a treatment strategy for patients with EIEE25.


Assuntos
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Simportadores/química , Simportadores/metabolismo , Animais , Sítios de Ligação , Drosophila , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
20.
Biochem J ; 477(21): 4149-4165, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33079129

RESUMO

The Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY) in the liver delivers citrate from the blood into hepatocytes. As citrate is a key metabolite and regulator of multiple biochemical pathways, deletion of Slc13a5 in mice protects against diet-induced obesity, diabetes, and metabolic syndrome. Silencing the transporter suppresses hepatocellular carcinoma. Therefore, selective blockers of NaCT hold the potential to treat various diseases. Here we report on the characteristics of one such inhibitor, BI01383298. It is known that BI01383298 is a high-affinity inhibitor selective for human NaCT with no effect on mouse NaCT. Here we show that this compound is an irreversible and non-competitive inhibitor of human NaCT, thus describing the first irreversible inhibitor for this transporter. The mouse NaCT is not affected by this compound. The inhibition of human NaCT by BI01383298 is evident for the constitutively expressed transporter in HepG2 cells and for the ectopically expressed human NaCT in HEK293 cells. The IC50 is ∼100 nM, representing the highest potency among the NaCT inhibitors known to date. Exposure of HepG2 cells to this inhibitor results in decreased cell proliferation. We performed molecular modeling of the 3D-structures of human and mouse NaCTs using the crystal structure of a humanized variant of VcINDY as the template, and docking studies to identify the amino acid residues involved in the binding of citrate and BI01383298. These studies provide insight into the probable bases for the differential effects of the inhibitor on human NaCT versus mouse NaCT as well as for the marked species-specific difference in citrate affinity.


Assuntos
Inibidores Enzimáticos/farmacocinética , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Animais , Ácido Cítrico/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Especificidade da Espécie , Simportadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA