RESUMO
Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods.
Assuntos
Fracionamento Químico/métodos , Lipídeos/isolamento & purificação , Rhodotorula/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Ionização de Chama , Lipídeos/análise , Análise de Regressão , Reprodutibilidade dos TestesRESUMO
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO(2) g dry cell weight (DCW)(-1) h(-1), the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO(2) g DCW(-1) h(-1) allowed maximization of the ethanol yield over xylose (0.327 g g(-1)), the average productivity (2.2 g l(-1) h(-1)) and the ethanol final titer (48.81 g l(-1)). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g(-1)) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO(2) g DCW(-1) h(-1), whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l(-1) h(-1) and 54.19 g l(-1) when the specific OUR was the highest.
Assuntos
Candida/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Microbiologia Industrial , Xilose/metabolismo , Candida/crescimento & desenvolvimento , Carbono/análise , Meios de Cultura , Etanol/análise , Fermentação , Cinética , Oxigênio/metabolismo , Polímeros/metabolismo , Xilitol/biossínteseRESUMO
Spiramycin production by Streptomyces ambofaciens Sp181110 with glucose as the carbon source was studied under a controlled nutritional environment. In a batch culture, the glucose excess after ammonium depletion led to pyruvate and alpha-ketoglutarate accumulation. 85 mg/l of spiramycin were produced in less than 70 h during the stationary and maintenance phase on these acids after glucose exhaustion. Fed-batch strategy was designed to study spiramycin production without by-product formation and glucose accumulation. In these conditions, up to 150 mg/l were produced in less than 80 h during the stationary phase on glucose. The antibiotic titre was found independent of the glucose feeding under carbon limitation and the importance of putative intracellular reserves formed after nutrient exhaustion was suggested. Besides, spiramycin production was not inhibited by the limiting flux of glucose.
Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Glucose/metabolismo , Modelos Biológicos , Espiramicina/biossíntese , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Biomassa , Proliferação de Células , Simulação por Computador , Especificidade da Espécie , Streptomyces/classificaçãoRESUMO
Exopolysaccharide (EPS) was produced by Klebsiella pneumoniae K63 grown in fed-batch cultures using different procedures of the supply of carbon or nitrogen (N) source, or both. Cultures grown with excess of glucose and limitation or exhaustion of N produced 54.8 and 47.4 g(EPS) l(-1), respectively. These cultures also led to an accumulation of 'overflow' metabolites representing more than 16% of carbon conversion. The consistency indexes ( K ) obtained to the end of the cultures, characteristic of the rheological property of the biopolymer, were 16.4 Pa s(n) for N deficiency and 5.2 Pa s(n) for N limitation conditions. The simultaneous limitation of glucose and N decreased the excretion of co-metabolites (6.4% of carbon conversion) and the EPS production (18.1 g(EPS) l(-1)), while improving the quality of the polysaccharide, characterized by the highest K of 126.2 Pa s(n) and the highest pseudoplasticity degree (flow behaviour index, n=0.2).
Assuntos
Técnicas de Cultura de Células/métodos , Glucose/metabolismo , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proliferação de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Polissacarídeos Bacterianos/química , ViscosidadeRESUMO
The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33 degrees C around 120 g l(-1) ethanol produced in 30 h with a slight benefit for growth at 30 degrees C and for ethanol production at 33 degrees C. Glycerol formation, enhanced with increasing temperatures, was coupled with growth for all fermentations; whereas, a decoupling phenomenon occurred at 36 and 39 degrees C pointing out a possible role of glycerol in yeast thermal protection.
Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Etanol/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/fisiologia , Temperatura , Proliferação de Células , Sobrevivência Celular/fisiologia , CinéticaRESUMO
In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions--oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)--on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l(-1)), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l(-1) in 45 h) and average productivity (3.3 vs 2.6 g l(-1) h(-1)) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l(-1). We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l(-1) in 45 h) in order to achieve a highly competitive dynamic process.
Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Aerobiose , Ar , Biomassa , Reatores Biológicos , Meios de Cultura , Etanol/análise , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Microbiologia Industrial/métodos , Cinética , Consumo de Oxigênio , Fatores de Tempo , Vitaminas/farmacologiaRESUMO
Several bottlenecks in the alcoholic fermentation process must be overcome to reach a very high and competitive performance of bioethanol production by the yeast Saccharomyces cerevisiae. In this paper, a nutritional strategy is described that allowed S. cerevisiae to produce a final ethanol titre of 19% (v/v) ethanol in 45 h in a fed-batch culture at 30 degrees C. This performance was achieved by implementing exponential feeding of vitamins throughout the fermentation process. In comparison to an initial addition of a vitamin cocktail, an increase in the amount of vitamins and an exponential vitamin feeding strategy improved the final ethanol titre from 126 g l(-1) to 135 g l(-1) and 147 g l(-1), respectively. A maximum instantaneous productivity of 9.5 g l(-1) h(-1) was reached in the best fermentation. These performances resulted from improvements in growth, the specific ethanol production rate, and the concentration of viable cells in response to the nutritional strategy.
Assuntos
Etanol/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitaminas/farmacologia , Biomassa , Meios de Cultura/metabolismo , Fermentação , Microbiologia Industrial/métodos , Cinética , Saccharomyces cerevisiae/efeitos dos fármacos , Coloração e RotulagemRESUMO
During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction.
Assuntos
Alcaligenes/metabolismo , Benzoatos/metabolismo , Succinatos/metabolismo , Adipatos/metabolismo , Alcaligenes/crescimento & desenvolvimento , Benzoatos/antagonistas & inibidores , Coenzima A/metabolismo , Meios de Cultura/metabolismo , Cinética , Succinato Desidrogenase/metabolismo , Ácido SuccínicoRESUMO
The aerobic growth of Schizosaccharomyces pombe on mixtures of glucose and malate was investigated during continuous high cell density cultures with partial cell-recycle using a membrane bioreactor. Determination of the specific metabolic rates relative to substrates and products allowed the capacity of the yeast to metabolize malic acid under both oxidative metabolism (carbon limited cultures) and oxidofermentative metabolism (carbon sufficient cultures) situations to be characterized. Under carbon limiting conditions, the specific rate of malate utilization was dependent on the residual concentration and a limit for a purely oxidative breakdown without ethanol formation was observed for a characteristic ratio between the rates of substrate consumption qM/qG of 1.63 g.g-1. In addition, the mass balance analysis revealed the incorporation of malic acid into biomass. In carbon excess environments, the specific rate of malate utilization was dependent on both the residual malate and the specific rate of glucose consumption indicating that in addition to its conversion into ethanol malate can be respiratively metabolized for qM/qG ratios higher than 0.4 g.g-1.
Assuntos
Meios de Cultura , Glucose/metabolismo , Malatos/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Aerobiose , Cinética , Oxirredução , Schizosaccharomyces/metabolismoRESUMO
A strain of the fission yeast Schizosaccharomyces pombe was aerobically grown in a cell-recycle fermentor under various operating conditions, i.e., different bleeding rates and various separate feed rates of glucose and basal medium. Carbon and energy balances were analyzed during steady-state culture regimes, allowing growth yields and maintenance coefficients to be determined under glucose-limited and glucose-excess environments. Special attention was given to the metabolic shift from purely oxidative to respirofermentative glucose catabolism resulting from a change in the growth-limiting factor. No maintenance requirements for the carbon source and for energy were observed during glucose-limited culture regimes and oxidative catabolism. Under glucose excess and respirofermentative metabolism, the m(G) coefficient was shown to be growth-linked, whereas the enhancement of the apparent m(e) coefficient observed for increased residual glucose concentrations could be assigned to a decline in the ATP yield.
RESUMO
The energetics of growth of the fission yeast Schizosaccharomyces pombe was studied in continuous high-cell concentration cultures using a cell-recycle fermentor. Under non-O2-limited conditions, steady-states were obtained at various specific growth rates (partial cell-recycle) with purely oxidative (glucose limitation) or respiro-fermentative (glucose excess) metabolic behaviour. The stoichiometry of biomass synthesis was established from the elemental composition of the cells and measurements of all the specific metabolic rates, i.e. consumption of glucose and O2 and production of CO2, ethanol and other products. The theoretical yield factor for biomass on glucose was YG,X = 0.85 C-mol.C-mol-1 and maintenance requirements were negligible. Assuming a constant coupling between energy generation and biomass formation for both respirative and respiro-fermentative breakdown of glucose, the biomass yield from ATP (YATP) and the efficiency of oxidative phosphorylation (P/O ratio) could be determined as 9.8 g biomass.mol ATP and 1.28 mol ATP.atom of O2, respectively.
Assuntos
Schizosaccharomyces/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose , Biotecnologia , Metabolismo Energético , Fermentação , Glucose/metabolismo , Fosforilação Oxidativa , Schizosaccharomyces/crescimento & desenvolvimentoAssuntos
Metabolismo dos Carboidratos , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Fermentação , Vetores Genéticos , Plasmídeos , Proteínas Recombinantes/biossíntese , alfa-Amilases/genética , alfa-Amilases/metabolismoRESUMO
The fermentation of glucose by a strain of Saccharomyces cerevisiae was studied in a continuous single-stage process with recycle of the cells via cross-flow micro-filtration membranes. Operating conditions were selected such that the culture was not carbon limited and inhibition by ethanol and cell death were minimized.Steady states were obtained for various biomass bleeding rates, i.e., various specific growth rates. From the experimental data, the stoichiometry of the simultaneous reactions, cell growth, ethanol production and maintenance were established using mass and degree of reduction balance relative to substrates (carbon source and oxygen) and products (biomass, ethanol, carbon dioxide etc.), and the growth parameters, yields, and maintenance cofficients were determined. It was shown that the oxygen consumption was not linked to the kinetics of the fermentation. The calculated growth constants were discussed and compared to the currently reported values.