RESUMO
The PhoPR system is a master regulator in Mycobacterium tuberculosis. A key difference between M. tuberculosis and Mycobacterium bovis is a G71I substitution in the M. bovis PhoR orthologue. Functional studies of the M. bovis PhoPR system have generated conflicting findings, with some research suggesting that the M. bovis PhoPR is defective while others indicate it is functional. We sought to revisit the functionality of the M. bovis PhoPR system. To address this, we constructed a phoPR mutant in the reference strain M. bovis AF2122/97. We employed a combination of growth assays and transcriptomics analyses to assess the phenotype of the mutant vs wild type and complemented strains. We found that the M. bovis AF2122/97 ΔphoPR mutant showed a growth defect on solid and liquid media compared to the wild type and complemented strains. The transcriptome of the M. bovis AF2122/97 ΔphoPR mutant was also altered as compared to wild type, including differential expression of genes involved in lipid metabolism and secretion. Our work provides further insight into the activity of PhoPR in M. bovis and underlines the importance of the PhoPR system as a master regulator of gene expression in the Mycobacterium tuberculosis complex.
Assuntos
Proteínas de Bactérias , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Mycobacterium bovis , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Fenótipo , Transcriptoma , Metabolismo dos Lipídeos/genética , Teste de Complementação GenéticaRESUMO
BackgroundMpox, caused by monkeypox virus (MPXV), was considered a rare zoonotic disease before May 2022, when a global epidemic of cases in non-endemic countries led to the declaration of a Public Health Emergency of International Concern. Cases of mpox in Ireland, a country without previous mpox reports, could reflect extended local transmission or multiple epidemiological introductions.AimTo elucidate the origins and molecular characteristics of MPXV circulating in Ireland between May 2022 and October 2023.MethodsWhole genome sequencing of MPXV from 75% of all Irish mpox cases (182/242) was performed and compared to sequences retrieved from public databases (n = 3,362). Bayesian approaches were used to infer divergence time between sequences from different subclades and evaluate putative importation events from other countries.ResultsOf 242 detected mpox cases, 99% were males (median age: 35 years; range: 15-60). All 182 analysed genomes were assigned to Clade IIb and, presence of 12 distinguishable subclades suggests multiple introductions into Ireland. Estimation of time to divergence of subclades further supports the hypothesis for multiple importation events from numerous countries, indicative of extended and sustained international spread of mpox. Further analysis of sequences revealed that 92% of nucleotide mutations were from cytosine to thymine (or from guanine to adenine), leading to a high number of non-synonymous mutations across subclades; mutations associated with tecovirimat resistance were not observed.ConclusionWe provide insights into the international transmission dynamics supporting multiple introductions of MPXV into Ireland. Such information supported the implementation of evidence-informed public health control measures.
Assuntos
Monkeypox virus , Mpox , Masculino , Humanos , Adulto , Feminino , Irlanda/epidemiologia , Monkeypox virus/genética , Teorema de Bayes , Mpox/diagnóstico , Mpox/epidemiologia , Surtos de DoençasRESUMO
During April-July 2022, outbreaks of severe acute hepatitis of unknown etiology (SAHUE) were reported in 35 countries. Five percent of cases required liver transplantation, and 22 patients died. Viral metagenomic studies of clinical samples from SAHUE cases showed a correlation with human adenovirus F type 41 (HAdV-F41) and adeno-associated virus type 2 (AAV2). To explore the association between those DNA viruses and SAHUE in children in Ireland, we quantified HAdV-F41 and AAV2 in samples collected from a wastewater treatment plant serving 40% of Ireland's population. We noted a high correlation between HAdV-F41 and AAV2 circulation in the community and SAHUE clinical cases. Next-generation sequencing of the adenovirus hexon in wastewater demonstrated HAdV-F41 was the predominant HAdV type circulating. Our environmental analysis showed increased HAdV-F41 and AAV2 prevalence in the community during the SAHUE outbreak. Our findings highlight how wastewater sampling could aid in surveillance for respiratory adenovirus species.