Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111524

RESUMO

P2Et is the standardized extract of Caesalpinia spinosa (C. spinosa), which has shown the ability to reduce primary tumors and metastasis in animal models of cancer, by mechanisms involving the increase in intracellular Ca++, reticulum stress, induction of autophagy, and subsequent activation of the immune system. Although P2Et has been shown to be safe in healthy individuals, the biological activity and bioavailability can be increased by improving the dosage form. This study investigates the potential of a casein nanoparticle for oral administration of P2Et and its impact on treatment efficacy in a mouse model of breast cancer with orthotopically transplanted 4T1 cells. Animals were treated with either free or encapsulated oral P2Et orally or i.p. Tumor growth and macrometastases were evaluated. All P2Et treatments significantly delayed tumor growth. The frequency of macrometastasis was reduced by 1.1 times with P2Et i.p., while oral P2Et reduced it by 3.2 times and nanoencapsulation reduced it by 3.57 times. This suggests that nanoencapsulation led to higher doses of effective P2Et being delivered, slightly improving bioavailability and biological activity. Therefore, the results of this study provide evidence to consider P2Et as a potential adjuvant in the treatment of cancer, while the nanoencapsulation of P2Et provides a novel perspective on the delivery of these functional ingredients.

2.
Rev. bras. farmacogn ; 27(3): 306-314, May-June 2017. graf
Artigo em Inglês | LILACS | ID: biblio-898676

RESUMO

Abstract Metabolic plasticity in cancer cells assures cell survival and cell proliferation under variable levels of oxygen and nutrients. Therefore, new anticancer treatments endeavor to target such plasticity by modifying main metabolic pathways as glycolysis or oxidative phosphorylation. In American traditional medicine Petiveria alliacea L., Phytolaccacea, leaf extracts have been used for leukemia and breast cancer treatments. Herein, we study cytotoxicity and antitumoral effects of P. alliacea extract in tumor/non-tumorigenic cell lines and murine breast cancer model. Breast cancer cells treated with P. alliacea dry extract showed reduction in β-F1-ATPase expression, glycolytic flux triggering diminished intracellular ATP levels, mitochondrial basal respiration and oxygen consumption. Consequently, a decline in cell proliferation was observed in conventional and three-dimension spheres breast cancer cells culture. Additionally, in vivo treatment of BALB/c mice transplanted with the murine breast cancer TS/A tumor showed that P. alliacea extract via i.p. decreases the primary tumor growth and increases survival in the TS/A model.

3.
Am J Chin Med ; 44(8): 1693-1717, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27852125

RESUMO

Cancer stem cells (CSC) are the primary cell type responsible for metastasis and relapse. ABC-transporters are integral membrane proteins involved in the translocation of substrates across membranes protecting CSC from chemotherapeutic agents. A plant extract derived from C. spinosa (P2Et) previously investigated for its antitumor activity has been shown to reduce lung and spleen metastasis in mice that have been transplanted with breast cancer cells, suggesting that P2Et has a significant activity against cancer stem cells (CSC). P2Et extract was thoroughly characterized by HPLC/MS. The cytotoxicity of P2Et extract was evaluated using a MTT assay in human and murine cell lines with different profiles of resistance, by Pgp overexpression or by enrichment in cancer stem cells. The synergistic effect of P2Et with doxorubicin was evaluated in vitro in several cell lines and in vivo in mice transplanted with TS/A cells, a highly resistant cell line and enriched in CD44[Formula: see text]CD24[Formula: see text]CSC. The chromatographic fingerprint of P2Et extract revealed 13 gallotannins. We also found that P2Et extract was cytotoxic to cells regardless of their resistant phenotype. Similarly, complementary activities were observed as drug efflux reversion and antioxidant activity. Short-treatment with P2Et extract, revealed a synergistic effect with doxorubicin in resistant cell lines. In vivo the P2Et increases mice survival in a TS/A breast cancer model associated with augmentation of calreticulin expression. Our results suggest that P2Et treatment could be used as adjuvant along with conventional chemotherapy to treat tumors with a MDR phenotype or with high frequency of CSC.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Caesalpinia/química , Doxorrubicina/farmacologia , Células-Tronco Neoplásicas/patologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Calreticulina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/isolamento & purificação , Camundongos Endogâmicos BALB C , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA