Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2389-2397, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433395

RESUMO

The properties of a prosthetic group are broadened by interactions with its neighboring residues in proteins. The retinal chromophore in rhodopsins absorbs light, undergoes structural changes, and drives functionally important structural changes in proteins during the photocycle. It is therefore crucial to understand how chromophore-protein interactions regulate the molecular structure and electronic state of chromophores in rhodopsins. Schizorhodopsin is a newly discovered subfamily of rhodopsins found in the genomes of Asgard archaea, which are extant prokaryotes closest to the last common ancestor of eukaryotes and of other microbial species. Here, we report the effects of a hydrogen bond between a retinal Schiff base and its counterion on the twist of the polyene chain and the color of the retinal chromophore. Correlations between spectral features revealed the unexpected fact that the twist of the polyene chain is reduced as the hydrogen bond becomes stronger, suggesting that the twist is caused by tight atomic contacts between the chromophore and nearby residues. In addition, the strength of the hydrogen bond is the primary factor affecting the color-tuning of the retinal chromophore in schizorhodopsins. The findings of this study are valuable for manipulating the molecular structure and electronic state of the chromophore by controlling chromophore-protein interactions.


Assuntos
Retinaldeído , Rodopsina , Retinaldeído/química , Estrutura Molecular , Polienos , Bases de Schiff/química
2.
J Phys Chem B ; 128(3): 744-754, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38204413

RESUMO

The creation of unidirectional ion transporters across membranes represents one of the greatest challenges in chemistry. Proton-pumping rhodopsins are composed of seven transmembrane helices with a retinal chromophore bound to a lysine side chain via a Schiff base linkage and provide valuable insights for designing such transporters. What makes these transporters particularly intriguing is the discovery of both outward and inward proton-pumping rhodopsins. Surprisingly, despite sharing identical overall structures and membrane topologies, these proteins facilitate proton transport in opposite directions, implying an underlying rational mechanism that can transport protons in different directions within similar protein structures. In this study, we unraveled this mechanism by examining the chromophore structures of deprotonated intermediates in schizorhodopsins, a recently discovered subfamily of inward proton-pumping rhodopsins, using time-resolved resonance Raman spectroscopy. The photocycle of schizorhodopsins revealed the cis-trans thermal isomerization that precedes reprotonation at the Schiff base of the retinal chromophore. Notably, this order has not been observed in other proton-pumping rhodopsins, but here, it was observed in all seven schizorhodopsins studied across the archaeal domain, strongly suggesting that cis-trans thermal isomerization preceding reprotonation is a universal feature of the schizorhodopsin family. Based on these findings, we propose a structural basis for the remarkable order of events crucial for facilitating inward proton transport. The mechanism underlying inward proton transport by schizorhodopsins is straightforward and rational. The insights obtained from this study hold great promise for the design of transmembrane unidirectional ion transporters.


Assuntos
Bacteriorodopsinas , Bombas de Próton , Bombas de Próton/química , Prótons , Bacteriorodopsinas/química , Bases de Schiff/química , Transporte de Íons , Luz
3.
J Phys Chem B ; 126(43): 8680-8688, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281583

RESUMO

Photoreceptor proteins play a critical role in light utilization for energy conversion and environmental sensing. Rhodopsin is a prototypical photoreceptor protein containing a retinal group that functions as a light-receptive site. It is essential to characterize the structure of the retinal chromophore because the chromophore structure, along with retinal-protein interactions, regulates which wavelengths of light are absorbed. Resonance Raman spectroscopy is a powerful tool to characterize chromophore structures in proteins. The resonance Raman spectra of heliorhodopsins, a recently discovered rhodopsin family, were previously reported to exhibit two intense ethylenic C═C stretching bands never observed for type-1 rhodopsins. Here, we show that the double-band feature in the ethylenic C═C stretching modes is not due to structural inhomogeneity but rather to the retinal polyene chain's linear structure. It contrasts with bent all-trans chromophore in type-1 rhodopsins. The linear structure of the chromophore results from weak atomic contacts between the 13-methyl group and a nearby Trp side chain, which can slow thermal reisomerization in the photocycle. It is possible that the deceleration of reisomerization increases the lifetime of the signaling intermediate for photosensory function.


Assuntos
Rodopsina , Rodopsinas Microbianas , Rodopsina/química , Rodopsinas Microbianas/química , Análise Espectral Raman/métodos , Vibração
4.
J Phys Chem B ; 125(26): 7155-7162, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34167296

RESUMO

Light is utilized as energy or information by rhodopsins (membrane proteins that contain a retinal chromophore). Heliorhodopsins (HeRs) are a new class of rhodopsins with low sequence identity (<15%) to microbial and animal rhodopsins. Their physiological roles remain unknown, although the involvement of a long-lived intermediate in the photocycle suggests a light-sensor function. Characterization of the molecular structures of the intermediates is essential to an understanding of the roles and mechanisms of HeRs. We determined the chromophore structures of the intermediates in HeR 48C12 by time-resolved resonance Raman spectroscopy and observed that the hydrogen bond of the protonated Schiff base strengthened prior to deprotonation. The chromophore is photoisomerized from the all-trans to the 13-cis form and is reisomerized in the transition from the O intermediate to the unphotolyzed state. Our results demonstrate that the chromophore structure evolves similarly to microbial rhodopsins, despite the dissimilarity in amino acid residues surrounding the chromophore.


Assuntos
Rodopsinas Microbianas , Vibração , Ligação de Hidrogênio , Estrutura Molecular , Rodopsina , Bases de Schiff , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA