Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38849297

RESUMO

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Fungos , Lignina , Metano , Metano/metabolismo , Carvão Mineral/microbiologia , Fungos/metabolismo , Fungos/classificação , Lignina/metabolismo , Fermentação , Penicillium/metabolismo
2.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157168

RESUMO

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Lignina , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA