Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38849297

RESUMO

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Fungos , Lignina , Metano , Metano/metabolismo , Carvão Mineral/microbiologia , Fungos/metabolismo , Fungos/classificação , Lignina/metabolismo , Fermentação , Penicillium/metabolismo
2.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157168

RESUMO

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Lignina , Reatores Biológicos
3.
Saudi J Biol Sci ; 30(12): 103850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020226

RESUMO

The present study demonstrates the potential of an integrated vertical flow-constructed wetland (IVFCW) for simultaneously treating black liquor and domestic wastewater. IVFCW was operated and monitored for 12 samples with the frequency of one sample per week with the following specifications viz,4 L of wastewater, a blend of 1:1 of pulp and paper industry effluent (black liquor BL), and domestic wastewater, was fed daily in a continuous mode with organic loading rate (OLR) of 1230 mg COD/L-Day, at a temperature range of 40-45℃ (natural temperature of the workstation). Valves controlled each chamber's hydraulic retention time (HRT) of 3 days and flow rate of 10 mL/minute. The IVFCW showed remarkable efficiency in removing various pollutants, including total suspended solids (TSS) and total dissolved solids (TDS), by 100 % and 83 %, respectively, and organic contaminants such as chemical oxygen demand (COD) and biological oxygen demand (BOD) by 80 % and 81 %, respectively. Moreover, the IVFCW efficiently reduced nutrients such as sulfates (SO4-2), phosphates (PO4-3), and total nitrogen by about 81 %, 63 %, and 61 %, respectively. The treatment also led to the reduction of lignin content by 83 %. Microbiological analysis revealed a significant reduction in fecal coliforms, and microbial profiling of Typha latifolia roots confirmed the presence of bacteria involved in lignin degradation. Seed germination and seedling survival were found to be negativelyaffected by untreated wastewater in a phytotoxicity study, suggesting that the wastewater's toxic chemicals could be harmful to plant life.This study highlights the effectiveness of IVFCW as a sustainable, economically viable, and resilient wastewater treatment system for mitigating environmental concerns related to the release of untreated wastewater.

4.
Environ Sci Pollut Res Int ; 30(34): 82834-82850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37335506

RESUMO

Biomethane generation by coal degradation not only can increase coalbed methane (CBM) reserves, namely, microbially enhanced coalbed methane (MECBM), but also has a significant effect on the pore structure of coal which is the key factor in CBM extraction. The transformation and migration of organics in coal are essential to pore development under the action of microorganisms. Here, the biodegradation of bituminous coal and lignite to produce methane and the cultivation with inhibition of methanogenic activity by 2-bromoethanesulfonate (BES) were performed to analyze the effect of biodegradation on coal pore development by determining the changes of the pore structure and the organics in culture solution and coal. The results showed that the maximum methane productions from bituminous coal and lignite were 117.69 µmol/g and 166.55 µmol/g, respectively. Biodegradation mainly affected the development of micropore whose specific surface area (SSA) and pore volume (PV) decreased while the fractal dimension increased. After biodegradation, various organics were generated which were partly released into culture solution while a large number of them remained in residual coal. The content of newly generated heterocyclic organics and oxygen-containing aromatics in bituminous coal was 11.21% and 20.21%. And the content of heterocyclic organics in bituminous coal was negatively correlated with SSA and PV but positively correlated with the fractal dimension which suggested that the retention of organics contributed greatly to the decrease of pore development. But the retention effect on pore structure was relatively poor in lignite. Besides, microorganisms were observed around fissures in both coal samples after biodegradation which would not be conducive to the porosity of coal on the micron scale. These results revealed that the effect of biodegradation on pore development of coal was governed by the combined action of organics degradation to produce methane and organics retention in coal whose contributions were antagonistic and determined by coal rank and pore aperture. The better development of MECBM needs to enhance organics biodegradation and reduce organics retention in coal.


Assuntos
Carvão Mineral , Metano , Biodegradação Ambiental , Metano/metabolismo
6.
Front Microbiol ; 14: 1126612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846805

RESUMO

Introduction: Croatian superhigh-organic-sulfur Rasa coal had been mined for nearly 400 years. The release of hazardous trace elements (HTEs) and toxic organic pollutants (TOPs) into the local environment by coal mining, preparation, and combustion activities has resulted in pollution. Methods: In this study, the diversity and composition of microbial communities in estuarine sediment and soil samples as well as community function responses to the pollutants were investigated. Results: The results showed that PAH degradation does occur following 60 years of natural attenuation, the location is still heavily polluted by polycyclic aromatic hydrocarbons (PAHs) and HTEs. Microbial analyses have shown that high concentrations of PAHs have reduced the diversity and abundance of microbial communities. The pollution exerted an adverse, long-term impact on the microbial community structure and function in the brackish aquatic ecosystem. Microorganisms associated with the degradation of PAHs and sulfur-containing compounds have been enriched although the diversity and abundance of the microbial community have reduced. Fungi which are believed to be the main PAH degrader may play an important role initially, but the activity remains lower thereafter. It is the high concentrations of coal-derived PAHs, rather than HTEs, that have reduced the diversity and abundance of microbial communities and shaped the structure of the local microbiota. Discussion: This study could provide a basis for the monitoring and restoration of ecosystems impacted by coal mining activities considering the expected decommission of a large number of coal plants on a global scale in the coming years due to growing global climate change concerns.

7.
Biotechnol Lett ; 45(1): 83-94, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441275

RESUMO

OBJECTIVES: The succession of microbial communities and intermediates during methane production was determined by pyrosequencing and GC-MS to investigate the mechanism of biomethanation enhancement from coal. RESULTS: The maximum methane production at 1.2 V was significantly higher than that at 0 V. Bacterial flora have been changed as a result of the addition of an electric field, e.g., the abundance of Pseudomonas significantly increased to enhance the coal degradation which improved the methane yield by facilitating the electron transfer. The fungal structure was also found stabilized by the electric field when compared to the control after 7 days of cultivation. The predominance of Methanosarcina could also stimulate interspecies electron transfer. The GC-MS analysis revealed that the electric field can selectively promote the metabolism of refractory intermediates such as esters and aromatics during coal biodegradation. CONCLUSION: The application of an electric field could enhance methane production from coal by changing the structure and succession of microbial communities, improving electron transfer, and enhancing the fermentation of intermediates during coal biodegradation.


Assuntos
Carvão Mineral , Microbiota , Carvão Mineral/microbiologia , Bactérias/genética , Bactérias/metabolismo , Fermentação , Metano/metabolismo
8.
Microbiol Res ; 265: 127179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099814

RESUMO

In present research, a potent fungal strain was isolated from paper mill effluent (black liquor) in order to investigate its potential for the biodegradation of lignin. Two step strategy was used to screen most efficient fungal strain having ability to growin MSM-black liquor medium and to degrade alkali lignin.The results of initial screening indicated that the strain M-2 produced comparatively higher ligninolytic zone on MSN agar plates supplemented with black liquor (BL) and alkali ligninase compared to the other isolates.The results of 18S rRNA gene sequencing revealed that strain M-2 showed ≥ 99% sequence homology with Dipodasceus australiansis.The process for the biodegradation of lignin was optimized using Taguchi Orthogonal Array design. Under optimized conditions of pH 9, 40 °C and 4% inoculum, a maximum of 89% lignin was degraded with 41% color reduction after 8 days of incubation period by Dipodasceus australiansis M-2. The pH and temperature were found to be significant terms with the p-values of 0.002 and 0.001 respectively. The laccase activity of the Dipodascus australiensis was found to be maximum of 1.511 U/mL. The HPLC analysis of lignin biodegradation indicated sharp transformation of peaks as compared to the control. Our results suggested that the strain Dipodascus australiensis M-2 possess excellent lignin degradation and color reduction capability and can be applied in waste treatment systems for pulp and paper mill effluent. In present work we are reporting first hand information regarding biodegradation of lignin by a potent strain of Dipodascus australiensis and statistical optimization of the bioprocess.


Assuntos
Resíduos Industriais , Lignina , Ágar , Álcalis , Biodegradação Ambiental , Dipodascus , Resíduos Industriais/análise , Lacase/metabolismo , Lignina/metabolismo , Papel
9.
Front Microbiol ; 13: 899863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711763

RESUMO

The coal-degrading ability of microorganisms is essential for the formation of biogenic coalbed methane. The ability to degrade the aromatic compound of coal is more important because it is perceived as the main refractory component for bioconversion. In this paper, a polycyclic aromatic hydrocarbon (PAH) degrading fungal community (PF) was enriched from produced water using phenanthrene as sole carbon source. The goal was to improve both the microbial structure of the methanogenic microflora and its coal-degrading ability. Two strategies were pursued. The first used coal pretreatment with PF (PP), followed by methane production by methanogenic microflora; the second used methane production directly from coal by mixed culture of PF and methanogenic microflora (PM). The results showed that methane productions of PP and PM increased by 29.40 and 39.52%, respectively. After 7 days of cultivation, the fungal community has been altered in PP and PM, especially for Penicillium the proportions of which were 67.37 and 89.81% higher than that in methanogenic microflora, respectively. Furthermore, volatile fatty acid accumulations increased by 64.21 and 58.15%, respectively. The 13C-NMR results showed that PF addition promoted the transformation of aromatic carbons in coal to carboxyl and carbonyl carbons, which contributed greatly to the production of methane together with oxygen-containing functional groups. These results suggest that methane production can be increased by indigenous PAH-degrading fungi by improving the fermentation of aromatics in coal and the generation of volatile fatty acids. This provided a feasible method for enhancing biomethane generation in the coal seam.

10.
Sci Total Environ ; 807(Pt 3): 151056, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673062

RESUMO

An in-depth understanding of the hydrogeochemical characteristics of coal mines is helpful in establishing an effective and successful exploration program of coalbed methane (CBM). This study provides a comprehensive analysis of hydrogeological characteristics, characteristics of coalbed water, and characteristics of the coal sample from a coal seam located in the Red River Basin (RRB). These physicochemical characteristics along with the microbial composition of coalbed water were critically analyzed. A high concentration of chloride and sodium was found in the coalbed water, presumably due to the coal mine's stratigraphic association with marine or marine-transitional beds. A correlation between the occurrence of microbes and the chemical components in the coalbed water was established. The characteristics of the coal were systematically analyzed, including proximate, ultimate, and petrographic analyses. Based on the coal macerals, coal rank is classified as low-rank (sub-bituminous) with a vitrinite reflectance (Ro, max) of 0.36%, suggesting that this type of low-rank coal is favorable for biogenic methane generation. Pore structures and pore types were characterized using different methods, including low-temperature nitrogen adsorption/desorption (LTNA), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). Coal from the study area has microporous and macroporous features. Pore types of the coal were also characterized using SEM. The primary genetic pore types of the Red River coal include plant tissue holes and blowholes.


Assuntos
Carvão Mineral , Água , Metano , Rios , Vietnã
11.
ACS Omega ; 6(47): 31935-31944, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870016

RESUMO

Biogenic coalbed methane (CBM) is generally believed to be formed by anaerobic bacteria and methanogens, while a few studies took fungi into account. Here, the microflora consisting of fungi and methanogens was enriched from the produced water associated with the Qinshui Basin using anthracite as the only carbon source. The maximum methane yield of 231 µmol/g coal was obtained after 22 days of cultivation under the optimum temperature of 35 °C, pH of 8, salinity of 0-2%, particle size of 0.075-0.150 mm, and the solid-liquid ratio of 1:30. It could remain active even after exposure to air for 24 h. Miseq results showed that the archaea were mainly composed of Methanocella, a hydrogenotrophic methanogen, followed by acetoclastic methanogen Methanosaeta and Methanosarcina, which could use various methanogenic substrates. The fungal communities mainly included Amorphotheca, Alternaria, Aspergillus, and Penicilium, which are all able to degrade complex organics such as aromatics and lignin. After cultivation, the crystal structure of anthracite became looser, as shown by XRD results, which might be due to the swelling effect caused by the destruction of the aromatic ring structure of coal under the function of fungi. The stretching vibration intensity of each functional group in coal decreased with cultivation, as revealed by FTIR. The GC-MS results showed that the concentration of alkanes and alcohols decreased significantly, which are the products of ring-opening of aromatics by fungi. These results suggested that fungi and methanogens in the coalbed also can syntrophically degrade coal effectively, especially for aromatics in coal.

12.
Heliyon ; 7(12): e08665, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005293

RESUMO

In-situ chemical oxidation is an effective groundwater remediation approach for delivering oxidants to the subsurface environment where various contaminants of concern, natural organic matter, and other reduced species within the soil consume the oxidants. The addition of these oxidants alters microbial activity changing the physical and chemical structure of the soil. This paper studied the effects of chemical oxidation on microbial activity with and without toluene. Several oxidants were used as part of the study: sodium percarbonate, hydrogen peroxide, potassium permanganate, and sodium persulfate evaluated at low, medium, and high concentrations. A series of biometer experiments seeded with microbe Pseudomonas putida F1 and soil sample and aqueous toluene solution for each oxidant was monitored by CO2 production as a function of incubation days to evaluate the effects of oxidation on the microbial activity. Of the oxidants tested, permanganate oxidation resulted in the highest increase in microbial activity post oxidation based on CO2 production both with and without the addition of toluene. The other oxidants exhibited a direct correlation between oxidant concentration and the change in permanganate chemical oxidant demand of the soil. However, there was no correlation between oxidant concentration and microbial activity. Each of the oxidants was shown to increase CO2 yield except for sodium percarbonate, which had an adverse effect on microbial activity. It is likely that the increased microbial activity associated with permanganate oxidation was the result of chemical reactions between the oxidant and natural organic matter in the soil.

13.
J Hazard Mater ; 407: 124348, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33144005

RESUMO

Produced water is a major waste problem in oil production yet it also represents a potential water source if treated properly, especially in arid regions. In this study, we investigate the anaerobic treatability of an oil-produced water with extremely high chemical oxygen demand (COD) and total dissolved organic carbon (TOC) from Wyoming's Greater Green River Basin using anaerobic microcosms inoculated with a microbial consortium derived from a brewery wastewater treatment facility. The results demonstrate that for this water and an appropriate microbial inoculation, high-COD/TOC can be effectively removed with concomitant energy recovery as a form of methane. 93% and 89% of the COD and TOC were removed with a final high methane yield of 33.9 mmol/g carbon (848 µmol/g carbon/day). Chemical analyses showed that the ethylacetate-extractable compounds were much more amenable to biodegradation than the CH2Cl2 extractable compounds. Furthermore, compounds that were added during drilling and completion remained in the water and contributed significantly to the COD and anaerobic degradability. This study demonstrates that produced waters are amenable to anaerobic biological treatment and also that thorough chemical analyses are necessary to fully understand the potential for treatment.


Assuntos
Petróleo , Purificação da Água , Anaerobiose , Reatores Biológicos , Metano , Águas Residuárias , Água
14.
Sci Rep ; 10(1): 20240, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214596

RESUMO

Skin darkening results as a consequence of the accumulation of skin pigment melanin. To combat this, the amplitude of skin lightening agents are commercially available, most of which inhibit melanin synthesis. Decolorization of melanin is an alternative method of skin lightening. In this study, we show that lignin peroxidase (LiP), an extracellular enzyme purified from Phanerochaete chrysosporium NK-1 isolated from a forest soil can effectively degrade and decolorize melanin in vitro. Decolorization conditions including pH, temperature, incubation time, enzyme concentration, and mediator addition were investigated to optimize the reaction conditions. The results indicate that pH 3, 40 °C, 15 IU/ml, and 10 h incubation were the optimal conditions for the decolorization of the melanin. The use of the mediator, veratryl alcohol was also found effective to enhance the efficacy of the melanin decolonization, with up to 92% decolorization. The scanning electron microscopy results showed void spaces on the treated melanin granules as compared to the untreated sample, indicating the degradation of melanin. Changes in the fingerprint region of the melanin were observed. Between wavenumbers 1500-500 cm-1, for example, the presence of new peaks in the treated melanin at 1513, 1464, and 1139 cm-1 CH2, CH3 bend and C-O-C stretch represented structural changes. A new peak at 2144 cm-1 (alkynyl C≡C stretch) was also detected in the decolorized melanin. The cytotoxicity study has shown that the treated melanin and LiP have low cytotoxic effects; however, the mediator of veratryl alcohol could result in high mortality which suggests that its use should be meticulously tested in formulating health and skincare products. The findings of the study suggest that LiP produced by Phanerochaete chrysosporium has the potential to be used in the medical and cosmetic industries, particularly for the development of biobased cosmetic whitening agents.


Assuntos
Melaninas/química , Peroxidases/farmacologia , Phanerochaete/isolamento & purificação , Preparações Clareadoras de Pele/farmacologia , Animais , Artemia/efeitos dos fármacos , Artemia/crescimento & desenvolvimento , Álcoois Benzílicos/química , Álcoois Benzílicos/toxicidade , Cosméticos , Florestas , Proteínas Fúngicas/farmacologia , Proteínas Fúngicas/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Peroxidases/toxicidade , Phanerochaete/enzimologia , Phanerochaete/crescimento & desenvolvimento , Proteólise , Preparações Clareadoras de Pele/toxicidade , Microbiologia do Solo , Fatores de Tempo
15.
Environ Monit Assess ; 192(9): 569, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770276

RESUMO

Hydrocarbon contamination due to anthropogenic activities is a major environmental concern worldwide. The present study focuses on biochar prepared from fruit and vegetable waste and sewage sludge using a thermochemical approach and its application for the enhanced bioremediation (biostimulation and bioaugmentation) of diesel-polluted soil. The biochar was characterized using FTIR (Fourier-transform infrared spectroscopy), elemental analysis, surface area analysis, and pore analysis. Adsorption experiments showed that hydrocarbon degradation was attributed to biological processes rather than adsorption. The study found that various biochar amendments could significantly increase the rate of hydrocarbon biodegradation with removal efficiencies > 70%. Bioaugmentation using cow dung further improved the removal efficiency to 82%. Treatments showing the highest degree of removal efficiency indicated the presence of 27 different bacteria phyla with Proteobacteria and Actinobacteria as the most abundant phyla. The present study concludes that biochar amendments have great potential for enhancing the bioremediation of soils contaminated with diesel range hydrocarbons.


Assuntos
Petróleo , Poluentes do Solo/análise , Animais , Biodegradação Ambiental , Bovinos , Carvão Vegetal , Monitoramento Ambiental , Feminino , Hidrocarbonetos , Solo , Microbiologia do Solo
16.
PLoS One ; 15(4): e0231623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294115

RESUMO

Biogenic CBM is an important component of detected CBM, which is formed by coal biodegradation and can be regenerated by anaerobic microorganisms. One of the rate-limiting factors for microbial degradation is the bioavailability of coal molecules, especially for anthracite which is more condense and has higher aromaticity compared with low-rank coal. In this paper, NaOH solution with different concentrations and treating time was employed to pretreat anthracite from Qinshui Basin to alter the coal structure and facilitate the biodegradation. The results showed that the optimal pretreatment conditions were 1.5 M NaOH treating for 12 h, under which the biomethane production was increased by 17.65% compared with untreated coal. The results of FTIR and XRD showed that NaOH pretreatment mainly reduced the multi-substituted aromatics, increased the C-O in alcohols and aromatic ethers and the branching degree of aliphatic chain, and decreased the aromatic ring structure, resulting in the improvement of coal bioavailability and enhancement of biomethane yield. And some organics with potential to generate methane were released to filtrate as revealed by GC-MS. Our results suggested that NaOH was an effective solution for pretreating coal to enhance biogenic methane production, and anthracite after treating with NaOH could be the better substrate for methanogenesis.


Assuntos
Archaea/metabolismo , Reatores Biológicos , Carvão Mineral/microbiologia , Metano/biossíntese , Hidróxido de Sódio/química , Biodegradação Ambiental , Metano/análise , Energia Renovável , Espectroscopia de Infravermelho com Transformada de Fourier , Desenvolvimento Sustentável , Difração de Raios X
17.
Environ Geochem Health ; 40(4): 1657-1665, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29492804

RESUMO

Coalbed methane (CBM) is an important unconventional energy source and accounts for a substantial portion of the overall natural gas production in the USA. The extraction of CBM generates significant amounts of produced water, where the withdrawal of groundwater may disturb the subsurface environment and aquifers. The release of toxic recalcitrant compounds from the coal seam is of great concern for those who use groundwater for irrigation and potable water sources. Experiments were conducted that determined a small fraction of coal carbon can be extracted and solubilized in water during the CBM formation and production. These soluble components included long-chain alkanes, aromatic hydrocarbons, and humic compounds. Biometer flask assays demonstrated that these compounds are bioamenable and can be potentially degraded by microorganisms to produce methane and carbon dioxide, where these biodegradation processes may further impact groundwater quality in the coal seam.


Assuntos
Carvão Mineral , Água Subterrânea/análise , Metano/química , Gás Natural/análise , Poluentes Químicos da Água/análise , Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Fluorescência
18.
Nat Commun ; 8(1): 568, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924176

RESUMO

Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

19.
J Environ Manage ; 131: 318-24, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24211379

RESUMO

Coalbed natural gas (CBNG) co-produced waters can contain sodium (Na(+)) concentrations that may be environmentally detrimental if discharged to receiving bodies of water or applied to land surfaces. A field demonstration and companion laboratory studies were conducted to evaluate the use of a Bear River zeolite (BR-zeolite) for mitigating impacts associated with Na(+) in CBNG waters. Bench-scale kinetic and adsorption isotherm studies were performed to determine both the rate and extent of sodium Na(+) adsorption and assess the effects of bicarbonate (HCO3(-)) and chloride (Cl(-)) anions. Results of these studies showed that the adsorption of Na(+) on BR-zeolite followed the Langmuir adsorption model with maximum adsorption equal to 21 and 18 g Na(+)/kg zeolite with 0.0012 and 0.0006 L/mg Langmuir coefficients (KL) for sodium bicarbonate and sodium chloride, respectively. The kinetics study indicated that the sorption of Na(+) was inversely related to the size of the zeolite particles with significantly greater adsorption for smaller particles. The field demonstration evaluated the effectiveness of BR-zeolite for mitigating infiltration losses from Na(+) in CBNG waters. The field site utilized 12 open boreholes, each installed to a depth of approximately 1.8 m. Each borehole was lined with a 3.0 m long, 15 cm diameter schedule 40 PVC pipe and fitted with an automatic data logging pressure transducer for measuring water levels over time. The BR-zeolite was found to mitigate much of the deleterious effect that high sodium adsorption ratio (SAR = 27 (mol/m(3))(1/2)) CBNG co-produced water had on soil permeabilities.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gás Natural , Purificação da Água/métodos , Zeolitas/química , Cinética
20.
J Environ Qual ; 40(1): 57-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21488493

RESUMO

Management of saline-sodic water from the coalbed natural gas (CBNG) industry in the Powder River Basin (PRB) of Wyoming and Montana is a major environmental challenge. Clinoptilolie zeolites mined in Nevada, California, and New Mexico were evaluated for their potential to remove sodium (Na+) from CBNG waters. Based on the exchangeable cation composition, naturally occurring calcium (Ca2+)-rich zeolites from New Mexico were selected for further evaluation. Batch adsorption experiments were conducted to evaluate the potential of the Ca(2+)-rich natural clinoptilolites to remove Na+ from saline-sodic CBNG waters. Batch adsorption experiments indicated that Na+ adsorption capacity ofclinoptilolite ranged from 4.3 (4 x 6 mesh) to 7.98 g kg(-1) (14 x 40 mesh). Among the different adsorption isotherms investigated, the Freundlich Model fitted the data best for smaller-sized (6 x 8, 6 x 14, and 14 x 40 mesh) zeolites. Passing the CBNG water through Ca(2+)-rich zeolite columns reduced the salt content (electrical conductivity [EC]) by 72% with a concurrent reduction in sodium adsorption 10 mmol 1/2 L(-1/2). Zeolite technology appears to be an effective water treatment alternative to industrial membrane treatment for removing Na+ from poor-quality CBNG waters.


Assuntos
Carvão Mineral , Combustíveis Fósseis , Cloreto de Sódio/química , Solo/química , Poluentes Químicos da Água/química , Zeolitas/química , Adsorção , Ecossistema , Indústrias Extrativas e de Processamento , Concentração de Íons de Hidrogênio , Resíduos Industriais , Cinética , Água/química , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA