Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biomed Pharmacother ; 177: 116998, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901197

RESUMO

Inflammatory skin disorders are the fourth leading cause of chronic non-fatal conditions, which have a serious impact on the patient quality of life. Due to their treatment with conventional corticosteroids, which often result in poor therapeutic efficacy, relapses and systemic side effects from prolonged therapy, these diseases represent a global burden that negatively impacts the global economy. To avoid these problems and optimize corticosteroid benefits, beclomethasone was loaded into liposome formulations specifically tailored for skin delivery. These formulations were enhanced with mucin (0.1 and 0.5 % w/v) to further ensure prolonged formulation permanence at the site of application. The addition of 0.5 % w/v mucin resulted in the formation of small unilamellar vesicles and multicompartment vesicles. Liposomes and 1mucin-liposomes were smaller (∼48 and ∼61 nm, respectively) and more monodispersed (PI ∼ 0.14 and ∼ 0.17, respectively) than 5mucin-liposomes, which were larger (∼137 nm), slightly polydispersed (PI ∼ 0.23), and less stable during storage (4 months in the dark at 25 °C). Liposomes were negatively charged (∼ -79 mV) irrespective of their composition, and capable of incorporating high amount of beclomethasone (∼ 80 %). In vitro studies on skin fibroblasts and keratinocytes confirmed the high biocompatibility of all formulations (viability ≥ 95 %). However, the use of mucin-liposomes resulted in higher efficacy against nitric oxide production and free radical damage. Finally, topical applications using 12-O-tetradecanoylphorbol-13-acetate-injured skin in vivo experiments showed that only the mucin-enriched formulations could restore healthy conditions within 4 days, underscoring promise as a treatment for skin disorders.

2.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686993

RESUMO

Nasco and Bovale grape pomace extracts, alone or in association, were loaded in nanoemulsions tailored for cosmetic application, using Kolliphor®RH40 (kolliphor) as the synthetic surfactant, Olivem®1000 (olivem) as the natural one, and lecithin as the cosurfactant. Pink transparent or milky dispersions, as a function of the used extract and surfactant, were obtained to be used as cosmeceutical serum or milk. The sizes of the nanoemulsion droplets were small (≈77 nm with kolliphor and ≈141 nm with olivem), homogenously dispersed (~0.24 with kolliphor and ~0.16 with olivem), highly negatively charged (≈-43 mV irrespective of the used surfactant) and their stability either on storage or under stressing conditions was affected by the used extract and surfactant. Formulations protected the extracts from the degradation caused by UV exposition, were biocompatible against keratinocytes, protected them against oxidative damages induced using hydrogen peroxide and inhibited the release of nitrite induced in macrophages using the lipopolysaccharide inflammatory stimulus. The overall results underlined the key role played by the composition of the formula to achieve a suitable cosmeceutical for skin care but even for the prevention of premature aging and chronic damages caused by the stressing conditions.

3.
Int J Pharm ; 644: 123287, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536641

RESUMO

WHO classified Candida albicans as one of the four critical priority fungi for public health worldwide in 2022. Conventional topical formulations commercially available for the treatment of cutaneous candidiasis are associated with low drug bioavailability at the infection site and the lack of a sustained therapeutic effect. The main objectives of this work were to develop new topical administration systems of clotrimazole (CLT) and study the influence of surfactants on the antifungal inhibitory efficacy. Therefore, the minimum concentration of CLT required to inhibit 50 % of growth (MIC50) was determined, obtaining a value of approximately 15 ng/mL. A non-ionic emulsion type 1, Beeler base cream, hydrogel and liposomes containing CLT were designed, prepared, characterized and their antifungal activity against C. albicans was tested. CLT loaded liposomes were small in size (102 nm), homogeneous (polydispersity index = 0.3) and uncharged (+0.07 mV), showing higher antifungal activity against C. albicans than that of the commercially available cream Canesten®. Furthermore, the antifungal activity of CLT was reduced in combination with surfactants such as Tween-80/Span-80 or Brij-S10. Sodium lauryl sulphate showed a fungicidal effect that disappeared when formulated as part of the Beeler base cream.


Assuntos
Candidíase , Clotrimazol , Clotrimazol/farmacologia , Antifúngicos , Excipientes/farmacologia , Lipossomos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida albicans , Tensoativos/farmacologia
4.
Int J Pharm ; 643: 123195, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37394159

RESUMO

Artemisinin, curcumin or quercetin, alone or in combination, were loaded in nutriosomes, special phospholipid vesicles enriched with Nutriose FM06®, a soluble dextrin with prebiotic activity, that makes these vesicles suitable for oral delivery. The resulting nutriosomes were sized between 93 and 146 nm, homogeneously dispersed, and had slightly negative zeta potential (around -8 mV). To improve their shelf life and storability over time, vesicle dispersions were freeze-dried and stored at 25 °C. Results confirmed that their main physico-chemical characteristics remained unchanged over a period of 12 months. Additionally, their size and polydispersity index did not undergo any significant variation after dilution with solutions at different pHs (1.2 and 7.0) and high ionic strength, mimicking the harsh conditions of the stomach and intestine. An in vitro study disclosed the delayed release of curcumin and quercetin from nutriosomes (∼53% at 48 h) while artemisinin was quickly released (∼100% at 48 h). Cytotoxicity assays using human colon adenocarcinoma cells (Caco-2) and human umbilical vein endothelial cells (HUVECs) proved the high biocompatibility of the prepared formulations. Finally, in vitro antimalarial activity tests, assessed against the 3D7 strain of Plasmodium falciparum, confirmed the effectiveness of nutriosomes in the delivery of curcumin and quercetin, which can be used as adjuvants in the antimalaria treatment. The efficacy of artemisinin was also confirmed but not improved. Overall results proved the possible use of these formulations as an accompanying treatment of malaria infections.


Assuntos
Adenocarcinoma , Antimaláricos , Artemisininas , Neoplasias do Colo , Curcumina , Malária , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Lipossomos , Curcumina/farmacologia , Células CACO-2 , Células Endoteliais , Malária/tratamento farmacológico , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos
5.
Pharmaceutics ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890351

RESUMO

The aims of this study were to evaluate the feasibility of a nortriptyline (NT) formulation for transdermal administration and to assess the usefulness of an estimated kinetic parameter (kout) using the in vitro infinite dose technique to predict in vivo plasma levels when used in combination with pharmacokinetic parameters. To do so, a simple one-compartment model was used to describe the transport of a permeant across a membrane (skin). This model provides relatively simple expressions for the amount of permeant in the skin, the cumulative amount of permeant that crosses the skin, and the flux of permeant, for both the infinite and the finite dose regimens. Transdermal administration of the formulated NT gel to rats resulted in plasma levels of approximately 150 ng/mL between 8 and 30 h post-administration. These levels were higher than the minimum concentration of 40 ng/mL recommended for smoking cessation therapy and slightly higher than the upper limit of the therapeutic range for the treatment of depression in humans. The one-compartment model used to describe transport across the skin was connected to a two-compartment pharmacokinetic model used to predict NT plasma concentrations in rats using the kout determined in vitro and the values of other pharmacokinetic parameters obtained in vivo. The predicted concentrations were close to the observed plasma levels and the time profiles were similar for both types of data. These results show the usefulness of the kout parameter determined in vitro to predict plasma concentrations of drugs administered percutaneously.

6.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458621

RESUMO

Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.


Assuntos
Lavandula , Antioxidantes/farmacologia , Cinamatos , Depsídeos/farmacologia , Lavandula/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ácido Rosmarínico
7.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407213

RESUMO

The extract of Teucrium marum L. (Lamiaceae) was obtained using the aerial parts of the plant, by means of a maceration process. Verbascoside, caffeic acids derivatives and flavonols were the main components contained in the extract as detected using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD) as an analytical method. The extract was successfully incorporated into hyalurosomes, which were further enriched by adding a water cosolvent (glycerol) and a surfactant (Tween 80), thus obtaining glycerohyalurosomes. Liposomes, transfersomes and glycerosomes were prepared as well and used as comparisons. All vesicles were small, as the mean diameter was never higher than ~115 nm, thus ideal for topical application and stable on storage, probably thanks to the highly negative surface charge of the vesicles (~-33 mV). The cryo-TEM images confirmed the formation of close-packed, oligolamellar and multicompartment hyalurosomes and glycerohyalurosomes in which around 95% of the used extract was retained, confirming their ability to simultaneously load a wide range of molecules having different chemical natures. Moreover, the extract, when loaded in hyalurosomes and glycerohyalurosomes was able to counteract the damages induced in the fibroblasts by hydrogen peroxide to a better extent (viability~110%) than that loaded in the other vesicles (viability~100%), and effectively promoted their proliferation and migration ensuring the healing of the wound performed in a cell monolayer (scratch assay) during 48 h of experiment. Overall in vitro results confirmed the potential of glycerohyalurosomes as delivery systems for T. marum extract for the treatment of skin lesions connected with oxidative stress.

8.
Biomedicines ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052836

RESUMO

In the present study, canthaxanthin was produced by biofermentation from Dietzia natronolimnaea HS-1 (D. natronolimnaea) and was loaded in phospholipid vesicles prepared with natural component using an easy and low dissipative method. Indeed, glycerosomes, hyalurosomes, and glycerohyalurosomes were prepared by direct hydration of both phosphatidylcholine and the biotechnological canthaxanthin, avoiding the use of organic solvents. Vesicles were sized from 63 nm to 87 nm and highly negatively charged. They entrapped a high number of the biomolecules and were stable on storage. Canthaxanthin-loaded vesicles incubated with fibroblasts did not affect their viability, proving to be highly biocompatible and capable of inhibiting the death of fibroblasts stressed with hydrogen peroxide. They reduced the nitric oxide expression in macrophages treated with lipopolysaccharides. Moreover, they favoured the cell migration in an in vitro lesion model. Results confirmed the health-promoting potential of canthaxanthin in skin cells, which is potentiated by its suitable loading in phospholipid vesicles, thus suggesting the possible use of these natural bioformulations in both skin protection and regeneration, thanks to the potent antioxidant, anti-inflammatory and antiageing effects of canthaxanthin.

9.
Front Pharmacol ; 12: 613449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867979

RESUMO

The cardiovascular toxicity of Abacavir is related to its purinergic structure. Purinergic P2X7-receptors (P2X7R), characterized by activation by high concentrations of ATP and with high plasticity, seem implicated. We appraise the nature of the interplay between Abacavir and P2X7R in generating vascular inflammation. The effects of Abacavir on leukocyte-endothelium interactions were compared with those of its metabolite carbovir triphosphate (CBV-TP) or ATP in the presence of apyrase (ATP-ase) or A804598 (P2X7R-antagonist). CBV-TP and ATP levels were evaluated by HPLC, while binding of Abacavir, CBV-TP and ATP to P2X7R was assessed by radioligand and docking studies. Hypersensitivity studies explored a potential allosteric action of Abacavir. Clinical concentrations of Abacavir (20 µmol/L) induced leukocyte-endothelial cell interactions by specifically activating P2X7R, but the drug did not show affinity for the P2X7R ATP-binding site (site 1). CBV-TP levels were undetectable in Abacavir-treated cells, while those of ATP were unaltered. The effects of Abacavir were Apyrase-dependent, implying dependence on endogenous ATP. Exogenous ATP induced a profile of proinflammatory actions similar to Abacavir, but was not entirely P2X7R-dependent. Docking calculations suggested ATP-binding to sites 1 and 2, and Abacavir-binding only to allosteric site 2. A combination of concentrations of Abacavir (1 µmol/L) and ATP (0.1 µmol/L) that had no effect when administered separately induced leukocyte-endothelium interactions mediated by P2X7R and involving Connexin43 channels. Therefore, Abacavir acts as a positive allosteric modulator of P2X7R, turning low concentrations of endogenous ATP themselves incapable of stimulating P2X7R into a functional proinflammatory agonist of the receptor.

10.
Antioxidants (Basel) ; 10(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923127

RESUMO

Neem oil, a plant-derived product rich in bioactives, has been incorporated in liposomes and hyalurosomes modified by adding argan oil and so called argan-liposomes and argan-hyalurosomes. Argan oil has also been added to the vesicles because of its regenerative and protective effects on skin. In the light of this, vesicles were specifically tailored to protect the skin from oxidative stress and treat lesions. Argan-liposomes were the smallest vesicles (~113 nm); the addition of sodium hyaluronate led to an increase in vesicle size (~143 nm) but it significantly improved vesicle stability during storage. In vitro studies confirmed the free radical scavenging activity of formulations, irrespective of their composition. Moreover, rheological investigation confirmed the higher viscosity of argan-hyalurosomes, which avoid formulation leakage after application. In vitro studies performed by using the most representative cells of the skin (i.e., keratinocytes and fibroblasts) underlined the ability of vesicles, especially argan-liposomes and argan-hyalurosomes, to counteract oxidative stress induced in these cells by using hydrogen peroxide and to improve the proliferation and migration of cells ensuring the more rapid and even complete closure of the wound (scratch assay).

11.
Pharmaceutics ; 13(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561940

RESUMO

Magnolia spp. extracts are known for their use in traditional Korean, Chinese, and Japanese medicine in the treatment of gastrointestinal disorders, anxiety, and allergies. Among their main components with pharmacological activity, the most relevant are magnolol and honokiol, which also show antitumoral activity. The objectives of this work were to study some physicochemical properties of both substances and their stability under different conditions of temperature, pH, and oxidation. Additionally, liposomes of honokiol (the least stable compound) were formulated and characterized. Both compounds showed pH-dependent solubility, with different solubility-pH profiles. Magnolol showed a lower solubility than honokiol at acidic pH values, but a higher solubility at alkaline pH values. The partition coefficients were similar and relatively high for both compounds (log Po/w ≈ 4.5), indicating their lipophilic nature. Honokiol was less stable than magnolol, mainly at neutral and basic pH values. To improve the poor stability of honokiol, it was suitably loaded in liposomes. The obtained liposomes were small in size (175 nm), homogeneous (polydispersity index = 0.17), highly negatively charged (-11 mV), and able to incorporate high amounts of honokiol (entrapment efficiency = 93.4%). The encapsulation of honokiol in liposomes increased its stability only at alkaline pH values.

12.
Pharmaceutics ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113923

RESUMO

An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index ≤ 0.30), and their zeta potential was highly negative (~-45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment.

13.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872140

RESUMO

This work aimed at developing a mouthwash based on liposomes loading Citrus limon var. pompia essential oil or citral to treat oropharyngeal diseases. Vesicles were prepared by dispersing phosphatidylcholine and pompia essential oil or citral at increasing amounts (12, 25 and 50 mg/mL) in water. Transparent vesicle dispersions were obtained by direct sonication avoiding the use of organic solvents. Cryogenic transmission electron microscopy (cryo-TEM) confirmed the formation of unilamellar, spherical and regularly shaped vesicles. Essential oil and citral loaded liposomes were small in size (~110 and ~100 nm, respectively) and negatively charged. Liposomes, especially those loading citral, were highly stable as their physico-chemical properties did not change during storage. The formulations were highly biocompatible against keratinocytes, were able to counteract the damages induced in cells by using hydrogen peroxide, and able to increase the rate of skin repair. In addition, liposomes loading citral at higher concentrations inhibited the proliferation of cariogenic bacterium.

14.
Sci Rep ; 10(1): 14184, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843707

RESUMO

Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.


Assuntos
Antioxidantes/isolamento & purificação , Química Verde/métodos , Limosilactobacillus reuteri , Nanoestruturas , Extratos Vegetais/química , Prebióticos , Reciclagem , Sementes/química , Vitis/química , Resíduos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Portadores de Fármacos , Humanos , Ácido Hialurônico , Peróxido de Hidrogênio/toxicidade , Enteropatias/prevenção & controle , Intestinos/efeitos dos fármacos , Lipossomos , Nanocápsulas , Nanoestruturas/administração & dosagem , Fosfolipídeos , Extratos Vegetais/administração & dosagem , Polissacarídeos , Polissorbatos , Prebióticos/administração & dosagem
15.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046201

RESUMO

Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was tested while using different bacterial strains and a yeast: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, respectively. The vesicles were small in size (~140 nm), slightly polydispersed (PI ~ 0.31), highly negatively charged (~ -73 mV), and able to incorporate high amounts of essential oil or citral (E% ~ 86%). Pompia essential oil and citral exhibited antimicrobial activity against all of the assayed microorganisms, with P. aeruginosa being the least sensitive. Citral was slightly more effective than pompia essential oil against E. coli, S. aureus, and C. albicans. The incorporation of citral in vesicles improved its antifungal activity against C. albicans.

16.
Acta Paediatr ; 109(2): 300-308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31336401

RESUMO

AIM: The adequate dosing of topiramate in neonates undergoing therapeutic hypothermia has not been established. The aim of this study was to design a dosing schedule capable of providing topiramate serum concentrations within the accepted therapeutic range. METHODS: Neonates (n = 52) with hypoxic ischaemic encephalopathy and subjected to therapeutic hypothermia were dosed with topiramate, 5 mg/kg on day one and 3 mg/kg on days two to five, to decrease seizure events. A total of 451 topiramate serum concentrations obtained in the patients were used to develop a population pharmacokinetic model using a non-linear mixed-effects modelling approach. RESULTS: A one-compartment model with first-order absorption and two different clearance terms, one for the cooling period and another for the post-warming period, were used to describe the concentration-time topiramate data. The probability of no-seizure events could not be related to topiramate concentrations, which was attributed to excessively low topiramate concentrations. A modified dosage schedule was designed with the aim of obtaining more than 90% of patients with topiramate concentrations within the therapeutic range after the first dose. CONCLUSION: The dosage schedule of topiramate in these patients should be modified with the aim of decreasing the frequency of seizure events.


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Humanos , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Convulsões , Topiramato
17.
Adv Ther ; 36(11): 2986-2996, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31587143

RESUMO

The subcutaneous administration route is widely used to administer different types of drugs given its high bioavailability and rapid onset of action. However, the sensation of pain at the injection site might reduce patient adherence. Apart from a direct effect of the drug itself, several factors can influence the sensation of pain: needle features, injection site, volume injected, injection speed, osmolality, viscosity and pH of formulation, as well as the kind of excipients employed, including buffers and preservatives. Short and thin needles, conveniently lubricated and with sharp tips, are generally used to minimize pain, although the anatomic injection site (abdomen versus thigh) also affects the sensation of pain. Large subcutaneous injection volumes are associated with pain. In this sense, the maximum volume generally accepted is around 1.5 ml, although volumes of up to 3 ml are well tolerated when injected in the abdomen. Injected volumes of up to 0.5-0.8 ml are not expected to increase substantially the pain produced by the needle insertion. Ideally, injectable products should be formulated as isotonic solutions (osmolality of about 300 mOsm/kg) and no more than 600 mOs/kg have to be used in order to prevent pain. A pH close to the physiological one is recommended to minimize pain, irritation, and tissue damage. Buffers are frequently added to parenteral formulations to optimize solubility and stability by adjusting the pH; however, their strength should be kept as low as possible to avoid pain upon injection. The data available recommend the concentration of phosphate buffer be limited to 10 mM and that the concentration of citrate buffer should be lower than 7.3 mM to avoid an increased sensation of pain. In the case of preservatives, which are required in multiple-dose preparations, m-cresol seems to be more painful than benzyl alcohol and phenol.Funding: Sandoz SA.


Assuntos
Reação no Local da Injeção/etiologia , Injeções Subcutâneas/efeitos adversos , Agulhas/efeitos adversos , Dor/etiologia , Preparações Farmacêuticas/administração & dosagem , Humanos , Injeções Subcutâneas/métodos , Concentração Osmolar , Cooperação do Paciente , Coxa da Perna
18.
Pharmaceutics ; 11(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174342

RESUMO

New three-dimensionally-structured hybrid phospholipid vesicles, able to load clotrimazole in a high amount (10 mg/mL), were obtained for the first time in this work by significantly reducing the amount of water (≤10%), which was replaced with a mixture of glycerol and ethanol (≈90%). A pre-formulation study was carried out to evaluate the effect of both the composition of the hydrating medium and the concentration of the phospholipid on the physico-chemical properties of hybrid vesicles. Four different three-dimensionally-structured hybrid vesicles were selected as ideal systems for the topical application of clotrimazole. An extensive physico-chemical characterization performed using transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), 31P-NMR, and small-angle X-ray scattering (SAXS) displayed the formation of small, multi-, and unilamellar vesicles very close to each other, and was capable of forming a three-dimensional network, which stabilized the dispersion. Additionally, the dilution of the dispersion with water reduced the interactions between vesicles, leading to the formation of single unilamellar vesicles. The evaluation of the in vitro percutaneous delivery of clotrimazole showed an improved drug deposition in the skin strata provided by the three-dimensionally-structured vesicles with respect to the commercial cream (Canesten®) used as a reference. Hybrid vesicles were highly biocompatible and showed a significant antifungal activity in vitro, greater than the commercial cream Canesten®. The antimycotic efficacy of formulations was confirmed by the reduced proliferation of the yeast cells at the site of infection in vivo. In light of these results, clotrimazole-loaded, three-dimensionally-structured hybrid vesicles appear to be one of the most innovative and promising formulations for the treatment of candidiasis infections.

19.
Pharmaceutics ; 11(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621127

RESUMO

The present study aimed at developing a new vesicular formulation capable of promoting the protective effect of ascorbic acid and tocopherol against intestinal oxidative stress damage, and their efficacy in intestinal wound healing upon oral administration. A pH-dependent copolymer (Eudragit® L100), a water-soluble prebiotic fibre (Nutriose® FM06), a phospholipid mixture (Lipoid S75), and two natural antioxidants (ascorbic acid and tocopherol) were combined to fabricate eudragit-nutriosomes by a simple, solvent-free procedure. The vesicles were spherical and oligolamellar, with some multicompartment structures in Eudragit-nutriosomes, small in size (~100 nm), with highly negative zeta potential. The effect of Eudragit® and Nutriose® on the stability on storage and in simulated gastrointestinal fluids were confirmed by the Turbiscan® technology and in vitro studies, respectively. Eudragit-nutriosomes exhibited a protective effect against H2O2-induced oxidative stress, and a proliferative effect in Caco-2 cells, as they provided the closure of the scratched area after 96 h of incubation.

20.
Int J Pharm ; 551(1-2): 34-41, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201294

RESUMO

Transfersomes were prepared by using different polysorbates (i.e., Tween 20, 40, 60 and 80) and loaded with tocopherol acetate, a naturally-occurring phenolic compound with antioxidant activity. The vesicles showed unilamellar morphology, small size (∼85 nm), low polydispersity index (≤0.27), and high entrapment efficiency, which increased as a function of the length of the Tween fatty acid chain (from 72% to 90%). The long-term stability of the formulations was evaluated by means of the Turbiscan™ technology, which indicated their good stability, irrespective of the Tween used. The vesicles efficiently delivered tocopherol to the skin, and showed biocompatibility in vitro in keratinocytes and fibroblasts. Regardless of the Tween used, the transfersomes were able to protect skin cells from the oxidative damage induced by hydrogen peroxide. Additionally, transfersomes promoted cell proliferation and migration, which resulted in an acceleration of skin wound closure. These results demonstrated that tocopherol-loaded transfersomes bear potential as topical delivery system with antioxidant activity and wound healing properties.


Assuntos
Antioxidantes/administração & dosagem , Regeneração/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Tocoferóis/administração & dosagem , Vitaminas/administração & dosagem , Animais , Linhagem Celular , Humanos , Peróxido de Hidrogênio/toxicidade , Lipossomos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pele/lesões , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA