Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35591435

RESUMO

Generally, the concrete with higher strength appears to produce brittle failure more easily. However, the use of mineral admixture can help in enhancing the ductility, energy dissipation, and seismic energy in the designed concrete. This paper presents energy absorption capacity, stiffness degradation, and ductility of the copper slag (CS) admixed reinforced concrete with fly ash (FA) beams subjected to forward cyclic load. The forward cyclic load was applied with the help of servo-hydraulic universal testing machines with 250 kN capacity. Twenty-four beams with a size of 100 mm × 150 mm × 1700 mm made with CS replaced for natural sand from 0% to 100% at an increment of 20%, and FA was replaced for cement from 0% to 30% with an increment of 10% were cast. Beams are designed for the grade of M30 concrete. Based on the preliminary investigation results, compressive strength of the concrete greatly increased when adding these two materials in the concrete. Normally, Grade of concrete can change the behaviour of the beam from a brittle manner to be more ductile manner. So, in this work, flexural behaviour of RC beams are studied with varying compressive strength of concrete. Experimental results showed that the RC beam made with 20% FA and 80% CS (FA20CS80) possesses higher ultimate load-carrying capacity than the control concrete beam. It withstands up to 18 cycles of loading with an ultimate deflection of 60 mm. The CS and FA admixed reinforced concrete composite beams have excellent ultimate load carrying capacity, stiffness, energy absorption capacity, and ductility indices compared to the control concrete beam.

2.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591526

RESUMO

The paper presents the thermal properties of lightweight steel concrete wall panels under different humidity conditions: under normal operation conditions and high moisture of the structure. The total thermal resistance (considering thermal inhomogeneity) of the enclosing lightweight steel concrete structure with a thickness of 310 mm using monolithic low-density foam concrete (density grade of D200), at an equilibrium humidity of 5% and 8%, was experimentally established. It was equal to 4.602 m2.0C/W and 4.1 m2.0C/W, respectively. In the dry state, the total thermal resistance of this structure was 5.59 m2.0 C/W, which corresponds to a thermal conductivity coefficient of 0.057 m °C/W. The influence of both horizontal and vertical joints of lightweight steel concrete wall panels and the absence of thermoprofiles on thermal properties was insignificant when using heat-insulating gaskets. The actual total thermal resistance of the structure was 2.5-2.8 times higher than that obtained by calculation under high-humidity conditions (29-32%). At the same time, the decrease in the value compared to the same value at an equilibrium humidity of 5% was only 4-6%. This indicates the good workability even of a structure with high-humidity foam concrete if the reduced total thermal resistance is complied with by the standardized one.

3.
Materials (Basel) ; 15(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35629570

RESUMO

The purpose of this work was to study the possibility of neutralizing high-calcium fly ash expansion during hydration. The object of the study was the fly ash of Berezovskaya GRES, which is capable of independent setting and hardening. The test in the Le Chatelier molds showed that the divergence of indicator arms was 90-100 mm 1 day after mixing with water. The expansion and cracking of the fly ash could be completely prevented by silica fume addition in an amount of 42.9% by weight of the fly ash. At the same time, the compressive strength of specimens from the fly ash-sand paste in a ratio of 1:5 at the age of 28 days was 1.47 MPa. The isothermal heat release at a temperature of 20 °C for 10 days reached 500 kJ/kg. XRF and DTA results showed that free lime in the fly ash was completely hydrated in 11 days and gave the greatest expansion in the absence of silica fume. The presence of silica fume made the lime hydration incomplete and decreased the expansion. Unslaked free lime remained in the system. Exothermic data showed that silica fume inhibited CaO hydration from the reaction start.

4.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454516

RESUMO

Compressive and flexural strength are the crucial properties of a material. The strength of recycled aggregate concrete (RAC) is comparatively lower than that of natural aggregate concrete. Several factors, including the recycled aggregate replacement ratio, parent concrete strength, water-cement ratio, water absorption, density of the recycled aggregate, etc., affect the RAC's strength. Several studies have been performed to study the impact of these factors individually. However, it is challenging to examine their combined impact on the strength of RAC through experimental investigations. Experimental studies involve casting, curing, and testing samples, for which substantial effort, price, and time are needed. For rapid and cost-effective research, it is critical to apply new methods to the stated purpose. In this research, the compressive and flexural strengths of RAC were predicted using ensemble machine learning methods, including gradient boosting and random forest. Twelve input factors were used in the dataset, and their influence on the strength of RAC was analyzed. The models were validated and compared using correlation coefficients (R2), variance between predicted and experimental results, statistical tests, and k-fold analysis. The random forest approach outperformed gradient boosting in anticipating the strength of RAC, with an R2 of 0.91 and 0.86 for compressive and flexural strength, respectively. The models' decreased error values, such as mean absolute error (MAE) and root-mean-square error (RMSE), confirmed the higher precision of the random forest models. The MAE values for the random forest models were 4.19 MPa and 0.56 MPa, whereas the MAE values for the gradient boosting models were 4.78 MPa and 0.64 MPa, for compressive and flexural strengths, respectively. Machine learning technologies will benefit the construction sector by facilitating the evaluation of material properties in a quick and cost-effective manner.

5.
Materials (Basel) ; 15(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407857

RESUMO

The annual worldwide production rate of waste glass is a million tons; the waste glass is non-biodegradable, resulting in environmental pollution. However, the chemical composition of waste glass (WG) is promoted to be used as a partial substitution of binding or filler (aggregate) material in concrete production. Although significant research has been conducted in this area, the results of these studies are scattered, and it is difficult to judge the suitability of waste glass in concrete. This review looks at the effects of waste glass on concrete's fresh, mechanical, and durability properties. It concludes that waste glass decreased the flowability of concrete. Furthermore, waste glass can be used as pozzolanic material, creating secondary cementitious compound (CSH) gel. CSH gel increased the cement paste's binding properties, leading to increased mechanical performance. Moreover, this study reveals that the optimum dose of waste glass is important to minimize the possibility of an alkali-silica reactions. Based on this review, most researchers conclude that 20% substitution of waste glass as binding material is the optimum dose. The wide range of discussion provides the necessary guideline for the best research practice in the future.

6.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35407996

RESUMO

This study aimed to expand the knowledge on the application of the most common industrial byproduct, i.e., fly ash, as a supplementary cementitious material. The characteristics of cement-based composites containing fly ash as supplementary cementitious material were discussed. This research evaluated the mechanical, durability, and microstructural properties of FA-based concrete. Additionally, the various factors affecting the aforementioned properties are discussed, as well as the limitations associated with the use of FA in concrete. The addition of fly ash as supplementary cementitious material has a favorable impact on the material characteristics along with the environmental benefits; however, there is an optimum level of its inclusion (up to 20%) beyond which FA has a deleterious influence on the composite's performance. The evaluation of the literature identified potential solutions to the constraints and directed future research toward the application of FA in higher amounts. The delayed early strength development is one of the key downsides of FA use in cementitious composites. This can be overcome by chemical activation (alkali/sulphate) and the addition of nanomaterials, allowing for high-volume use of FA. By utilizing FA as an SCM, sustainable development may promote by lowering CO2 emissions, conserving natural resources, managing waste effectively, reducing environmental pollution, and low hydration heat.

7.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329449

RESUMO

Preplaced aggregate concrete (PAC) is prepared in two steps, with the coarse aggregate being initially laid down in the formwork, after which a specialised grout is injected into it. To enhance the properties of concrete and to reduce the emission of CO2 produced during the production of cement, supplementary cementitious materials (SCMs) are used to partially substitute ordinary Portland cement (OPC). In this study, 100 mm × 200 mm (diameter x height) PAC cylinders were cast with 10 per cent of cement being substituted with silica fume; along with that, 1.5% dosage of Macro polypropylene fibres were also introduced into the coarse aggregate matrix. Compressive strength test, splitting tensile strength test, mass loss at 250 °C, and compressive strength at 250 °C were performed on the samples. PAC samples with 10% of cement replaced with Silica Fume (SPAC) were used as control samples. The primary objective of this study was to observe the effect of the addition of Polypropylene fibres to PAC having Silica fume as SCM (FRPAC). The aforementioned tests showed that FRPAC had a lower compressive strength than that of the control mix (SPAC). FRPAC had greater tensile strength than that of NPAC and SPAC. Mass loss at 250 °C was greater in SPAC compared to FRPAC. The compressive strength loss at 250 °C was significantly greater in FRPAC compared to SPAC. FRPAC exhibited a greater strain for the applied stress, and their stress-strain curve showed that FRPAC was more ductile than SPAC.

8.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832333

RESUMO

This work aimed to study the effect of a microfibrillated cellulose additive on strength, elastic modulus, heat release, and shrinkage of mortar and concrete. The dosage of the additive varies from 0.4 to 4.5% by weight of the cement. The change in strength with an increase in the dosage of the additive occurred in a wave-like manner. The uneven character of the change in the results also took place in the determination of heat release and shrinkage. In general, heat release and shrinkage decreased at increasing additive dosage. The additive showed the greatest decrease in the heat release of concrete at a content of 2%. The heat release of concrete practically differed little from the exotherm of the standard at an additive content of 1 and 1.5%. The addition of microfibrillated cellulose additive in small (0.5%) and large (1.5%) amounts reduced shrinkage compared to the reference, and at an intermediate content (1%), the shrinkage was higher than in the reference specimens. In this case, the water evaporation rate from concrete increased with an increase in the additive. With an increase in the additive dosage, the modulus of elasticity decreases. Thus, the microfibrillated cellulose additive provides concrete with lower values of the modulus of elasticity, heat release, and shrinkage, and the additive is recommended for use in concretes with increased crack resistance during the hardening period. The recommended additive content is 0.5% by weight of cement. At the specified dosage, it is possible to provide the class of concrete in terms of compressive strength C35/45.

9.
Materials (Basel) ; 14(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640055

RESUMO

The application of multiphysics models and soft computing techniques is gaining enormous attention in the construction sector due to the development of various types of concrete. In this research, an improved form of supervised machine learning, i.e., multigene expression programming (MEP), has been used to propose models for the compressive strength (fc'), splitting tensile strength (fSTS), and flexural strength (fFS) of sustainable bagasse ash concrete (BAC). The training and testing of the proposed models have been accomplished by developing a reliable and comprehensive database from published literature. Concrete specimens with varying proportions of sugarcane bagasse ash (BA), as a partial replacement of cement, were prepared, and the developed models were validated by utilizing the results obtained from the tested BAC. Different statistical tests evaluated the accurateness of the models, and the results were cross-validated employing a k-fold algorithm. The modeling results achieve correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE) above 0.8 each with relative root mean squared error (RRMSE) and objective function (OF) less than 10 and 0.2, respectively. The MEP model leads in providing reliable mathematical expression for the estimation of fc', fSTS and fFS of BA concrete, which can reduce the experimental workload in assessing the strength properties. The study's findings indicated that MEP-based modeling integrated with experimental testing of BA concrete and further cross-validation is effective in predicting the strength parameters of BA concrete.

10.
Materials (Basel) ; 13(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139673

RESUMO

The influence of the electrostatic precipitator ash "Zolest-bet" and silica fume on the sulfate resistance of Portland cement was studied. The evaluation criteria were the expansion, strength, density, and appearance of the samples, hardened in a 5% Na2SO4 solution starting from 3 days of age for 192 days at a temperature of 20 °C and 148 days at 40 °C. The mixture with the silica fume additive had the minimum expansion under the Na2SO4 action, and the mixture with the fly ash "Zolest-bet" additive had the greatest expansion. Zolest-bet ash in pure water shrank the mixture by 0.19 mm/m by the end of the hardening period, and it gave a linear expansion of 0.23 mm/m in a Na2SO4 solution after hardening. The mixture can be considered sulfate resistant at a given value of linear expansion. Despite the greatest expansion, the compressive strength of the samples with the Zolest-bet additive was found to be the highest at hardening in both environments. The flexural strength was found to be the highest after being in Na2SO4 solution. The sulfate resistance of the mixture with silica fume was higher than that of the mixture based on sulfate-resistant cement. This mixture did not have expansion in comparison with the initial length, instead it shrank, while the expansion of sulfate-resistant cement was 0.006% over the control period. The compressive strength of the mixture with the silica fume additive was slightly inferior to the strength of the mixture with Zolest-bet ash.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA