Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2024: 3829941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290524

RESUMO

Prenatal stress (PS) affects the development and functioning of the central nervous system, but the exact mechanisms underpinning this effect have not been pinpointed yet. A promising model of PS is one based on chronic exposure of pregnant rodents to variable-frequency ultrasound (US PS), as it mimics the PS with a psychic nature that most adequately captures the human stressors in modern society. The aim of this study was to investigate the effects of US PS on the brain neurotransmitter, neuropeptide, and neurotrophic systems of newborn Wistar rats. We determined the concentration of neurotransmitters and their metabolites (serotonin, HIAA, dopamine, DOPAC, and norepinephrine), neuropeptides (α-MSH, ß-endorphin, neurotensin, oxytocin, and substance P), and the neurotrophin brain-derived neurotrophic factor (BDNF) in rat brain tissues by HPLC-ED, ELISA, and multiplex ELISA. Correlation analysis and principal component analysis (PCA) were used to get a sense of the relationship between the biochemical parameters of the brain. The results demonstrated that US PS increases the concentration of serotonin (p=0.004) and DOPAC (p=0.04) in the hippocampus has no effect on the neurotransmitter systems of the frontal cortex, reduces the concentration of BDNF in the entirety of the brain of males (p=0.008), and increases the neuropeptides α-MSH (p=0.02), ß-endorphin (p=0.01), oxytocin (p=0.008), and substance P (p < 0.001) in the entire brain. A degree of complexity in the neurotransmitter system network in the frontal cortex and network change in the hippocampus after exposure to US PS have been observed. PCA revealed a similar pattern of neurotransmitter system interactions in the frontal cortex and hippocampus in males and females after exposure to US PS. We suggest that US PS can alter neurodevelopment, which is mediated by changes in the studied neurochemical systems that thus affect the behavioral phenotype in animals.


Assuntos
Animais Recém-Nascidos , Encéfalo , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Feminino , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurotransmissores/metabolismo , Estresse Psicológico/metabolismo , Ondas Ultrassônicas , Neuropeptídeos/metabolismo
2.
Metabolites ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392971

RESUMO

Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.

3.
Dev Neurosci ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857257

RESUMO

The development of animal models of mental disorders is an important task, since such models are useful for studying the neurobiological mechanisms of psychopathologies and for trial of new therapeutic drugs. One way to model pathologies of the nervous system is to impair fetal neurodevelopment through stress of the pregnant future mother, or prenatal stress. The use of variable frequency ultrasound in rodents is a promising method of imitating psychological stress, to which women in modern society are most often subjected. The aim of our study was to investigate the effect of prenatal stress induced by exposure to variable frequency ultrasound (US PS) throughout the gestational period on the adult rat offspring, namely to identify features of behavioral alterations and neurochemical brain parameters that can be associated with certain mental disorders in humans, to determine the possibility of creating a new model of psychopathology. Our study included a study of some behavioral characteristics of male and female rats in the elevated plus maze, open field test, object recognition test, social interaction test, sucrose preference test, latent inhibition test, Morris water maze, forced swimming test, acoustic startle reflex and prepulse inhibition tests. We also determined the activity of the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems in the hippocampus and frontal cortex by HPLC-ED. Concentration of norepinephrine, dopamine, DOPAC, serotonin, and HIAA, as well as DOPAC/dopamine and HIAA/serotonin ratios were determined. A correlation analysis of behavioral and neurochemical parameters in male and female rats was performed based on the data obtained. The results of the study showed that US PS altered the behavioral phenotype of the rat offspring. US PS increased the level of anxious behavior, impaired orientation-research behavior, increased grooming activity, decreased the desire for social contacts, shifted behavioral reactions from social interaction to interaction with inanimate objects, impaired latent inhibition, and decreased the startle reflex. US PS activated the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems of the rat frontal cortex and hippocampus. A correlation between neurochemical and behavioral parameters was revealed. Our study showed that US PS leads to a certain dysfunction on behavioral and neurochemical levels in rats that is most closely associated with symptoms of schizophrenia or autism. We hypothesize that this could potentially be an indicator of face validity for a model of psychopathology based on neurodevelopmental impairment.

4.
Women Health ; 63(4): 285-295, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882933

RESUMO

The detection of specific markers of dementia and mild cognitive decline (MCI) could be the key to disease prevention and forehanded treatment. Female gender is one of the major risk factor for dementia. The aim of our study was to compare serum concentration of some factors related to lipid metabolism and the immune system in patients with MCI and dementia. The study was performed on women >65 years old: controls (n = 75), diagnosed with dementia (n = 73) and MCI (n = 142). Patients were evaluated using Mini-Mental State Examination, Clock Drawing Test and Montreal Cognitive Assessment scales in the period 2020-2021. The level of Apo A1 and HDL was significantly decreased in patients with dementia; the level of Apo A1 was also decreased in MCI. EGF, eotaxin-1, GRO-α, and IP-10 were elevated in patients with dementia compared to the controls. IL-8, MIP-1ß, sCD40L, and TNF-α levels were decreased in MCI patients and increased in patients with dementia compared to the control. Serum VEGF levels were decreased in MCI and dementia patients in comparison with the control. We hypothesize that no single marker can indicate a neurodegenerative process. Future research should focus on identifying markers to determine possible diagnostic combinations that can reliably predict neurodegeneration.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Feminino , Idoso , Demência/diagnóstico , Demência/etiologia , Demência/psicologia , Apolipoproteína A-I , Metabolismo dos Lipídeos , Fator A de Crescimento do Endotélio Vascular , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Biomarcadores , Testes Neuropsicológicos
5.
Front Pharmacol ; 13: 1033186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532718

RESUMO

Objectives: In the current study, we compared the effects of a single intranasal administration of clomipramine with effects of four neuropeptides, melatonin, oxytocin, orexin, and neuropeptide Y, to compare them in an acute stress model. Methods: The anti-stress effect was evaluated in the sucrose preference and forced swimming tests. Serum corticosterone level in rats was measured to evaluate the stress response. Results: Neuropeptide Y reduced immobilization time in the Porsolt test and decreased corticosterone levels, but increased the anhedonia. Orexin had no positive effect on animal behavior, but decreased corticosterone levels. Oxytocin decreased immobilization time, maintained anhedonia at the level of control, but did not affect corticosterone levels. Melatonin demonstrated no positive effects in any of the tests. Conclusion: The intranasal administered neuropeptide Y could be a promising compound for the treatment of stress disorders.

6.
Gels ; 8(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36547320

RESUMO

The nasal drug delivery route has distinct advantages, such as high bioavailability, a rapid therapeutic effect, non-invasiveness, and ease of administration. This article presents the results of a study of the processes for obtaining chitosan aerogel particles that are promising as nasal or inhalation drug delivery systems. Obtaining chitosan aerogel particles includes the following steps: the preparation of a chitosan solution, gelation, solvent replacement, and supercritical drying. Particles of chitosan gels were obtained by spraying and homogenization. The produced chitosan aerogel particles had specific surface areas of up to 254 m2/g, pore volumes of up to 1.53 cm3/g, and porosities of up to 99%. The aerodynamic diameters of the obtained chitosan aerogel particles were calculated, the values of which ranged from 13 to 59 µm. According to the calculation results, a CS1 sample was used as a matrix for obtaining the pharmaceutical composition "chitosan aerogel-clomipramine". X-ray diffraction (XRD) analysis of the pharmaceutical composition determined the presence of clomipramine, predominantly in an amorphous form. Analysis of the high-performance liquid chromatography (HPLC) data showed that the mass loading of clomipramine was 35%. Experiments in vivo demonstrated the effectiveness of the pharmaceutical composition "chitosan aerogel-clomipramine" as carrier matrices for the targeted delivery of clomipramine by the "Nose-to-brain" mechanism of nasal administration. The maximum concentration of clomipramine in the frontal cortex and hippocampus was reached 30 min after administration.

7.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455459

RESUMO

We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant.

8.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502505

RESUMO

BACKGROUND: Molecular mechanisms of depression remain unclear. The brain metabolome after antidepressant therapy is poorly understood and had not been performed for different routes of drug administration before the present study. Rats were exposed to chronic ultrasound stress and treated with intranasal and intraperitoneal clomipramine. We then analyzed 28 metabolites in the frontal cortex and hippocampus. METHODS: Rats' behavior was identified in such tests: social interaction, sucrose preference, forced swim, and Morris water maze. Metabolic analysis was performed with liquid chromatography. RESULTS: After ultrasound stress pronounced depressive-like behavior, clomipramine had an equally antidepressant effect after intranasal and intraperitoneal administration on behavior. Ultrasound stress contributed to changes of the metabolomic pathways associated with pathophysiology of depression. Clomipramine affected global metabolome in frontal cortex and hippocampus in a different way that depended on the route of administration. Intranasal route was associated with more significant changes of metabolites composition in the frontal cortex compared to the control and ultrasound groups while the intraperitoneal route corresponded with more profound changes in hippocampal metabolome compared to other groups. Since far metabolic processes in the brain can change in many ways depending on different routes of administration, the antidepressant therapy should also be evaluated from this point of view.


Assuntos
Clomipramina/farmacologia , Depressão/tratamento farmacológico , Administração Intranasal/métodos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clomipramina/administração & dosagem , Depressão/fisiopatologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Metaboloma/fisiologia , Metabolômica/métodos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico
9.
Front Physiol ; 12: 659366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935805

RESUMO

Fetal development is susceptible to environmental factors. One such factor is exposure to stress during pregnancy. The present study aimed to investigate the effects of chronic prenatal stress (PS) on the development and behavior of rat offspring during infancy and juvenile ages. Existing approaches to modeling prenatal stress on animals do not correlate with the main type of stress in pregnant women, namely psychological stress. We used a new stress paradigm in the experiment, namely, stress induced by exposure to variable frequency ultrasound (US), which acted on pregnant Wistar rats on gestational days 1-21. This type of stress in rodents can be comparable to psychological stress in humans. We assessed physical development, reflex maturation, motor ability development, anxious behavior, response to social novelty, and social play behavior in male and female offspring. Additionally, we investigated maternal behavior and the effect of neonatal handling (NH) on behavior. Prenatal stress did not affect postnatal developmental characteristics in rat pups, but prenatally stressed rats had higher body weight in early and adult age than controls. Prenatal exposure to a stressor increased anxiety in the open-field test (OF), changed social preferences in the social novelty test (SN), and impaired social play behavior in males. Neonatal handling reduced anxiety and restored social behavior, but evoked hyperactive behavior in rat pups. Maternal behavior did not change. Our study demonstrated for the first time that exposure to variable frequency ultrasound during pregnancy influences offspring development and impairs behavior, correlating with the effects of other types of stress during pregnancy in rodents. This supports the idea of using this exposure to model prenatal stress.

10.
Front Psychiatry ; 12: 655178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025476

RESUMO

We investigated the associations of DRD3 rs6280, HTR1A rs6295, BDNF rs6265, SCL6A4 rs16965628, and 5HT2A rs7322347 with schizophrenia in a case-control study, and associations of these genetic variants with several clinical features. We also investigated markers of inflammatory response (C-reactive protein, IL-2, IL-6, IL-10), the activity of leukocytic elastase (LE) and α1-proteinase inhibitor (a1-PI), antibodies to S100B and myelin basic protein (MBP) in schizophrenia. Clinical symptoms were assessed on three scales: Positive and Negative Syndrome Scale, The Bush - Francis Catatonia Rating Scale and Frontal Assessment Battery. All SNPs were typed using predesigned TaqMan SNP genotyping assays. The biomarkers related to the immune system were routinely tested using ELISA kits. The association with schizophrenia was found for DRD3 rs6280 (p = 0.05) and HTR2A rs7322347 (p = 0.0013). We found differences between groups by parameters of LE and a1-PI and LE/a1-PI (p < 0.001). And IL-6 was evaluated in the schizophrenia group (p < 0.001). We showed that patients with the TT allele (BDNF rs6265) had more severe impairments in frontal lobe function. a1-PI can serve as a marker for assessing the severity of frontal lobe damage in patients with frontal dementia. We found some biological parameters reflecting the severity of frontal dysfunction in schizophrenia.

11.
Neuropeptides ; 83: 102079, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32839007

RESUMO

Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.


Assuntos
Arginina Vasopressina/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Transtornos Mentais/metabolismo , Ocitocina/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA