Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biosensors (Basel) ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831933

RESUMO

Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Imunoglobulina A Secretora , Saliva , Antioxidantes , Vacinas contra COVID-19 , Imunoglobulina G , Imunoensaio , SARS-CoV-2 , Anticorpos Antivirais , Testes Imediatos , Teste para COVID-19
2.
JMIR Mhealth Uhealth ; 8(9): e18782, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894233

RESUMO

BACKGROUND: Home-based care is one of the most promising solutions to provide sufficient medical care for several older patients in Japan. However, because of insufficient diagnostic devices, it is sometimes difficult to detect early signs of the occurrence or worsening of diseases, such as infections under home-based care settings. C-reactive protein (CRP) is highly sensitive to diagnosing infections, and its elevation can help diagnose acute infection in older patients. Therefore, a CRP-measuring device that can be used in such a specific occasion is needed for home-based care. However, aspects such as its size, weight, and procedure are still challenging with respect to the practical use of mobile devices that quantitatively measure CRP levels easily and quickly under home-based care settings. OBJECTIVE: We developed a new mobile, rapid CRP measurement device using a gold-linked electrochemical immunoassay (GLEIA) system. The aim of this study was to evaluate the feasibility of this mobile CRP-testing device. METHODS: First, we assessed the performance of bare GLEIA-based electrode chips as the foundation of the device. After embedding the bare GLEIA-based electrode chips in a special plastic case and developing the mobile CRP-testing device, we further tested the device prototype using clinical blood samples. Finally, we evaluated the intra-assay variability for precision in the same condition and inter-assay variability for reproducibility in different conditions. RESULTS: Blood samples for analysis were obtained by direct vein puncture from outpatients (N=85; females: 57/85; males: 28/85; age: 19-88 years) at Kanazawa University Hospital in Japan. For performance evaluation of bare GLEIA-based electrode chips, we used 85 clinical blood samples. There was a significant positive correlation between the electrode-predicted CRP levels and the reference CRP concentrations (R2=0.947; P<.001). The assembled device was mobile (size 45×90×2.4 mm; weight 10 g) and disposable. The minimum volume of the sample needed for measuring CRP was 1.4 µL. The estimated preanalytical time was approximately 7 minutes and 40 seconds, and analysis time was approximately 1 minute and 10 seconds. Subsequently, for performance evaluation of the mobile CRP-testing device using GLEIA-based electrode chips, we used 26 clinical blood samples and found a significant positive correlation between the mobile device-predicted CRP levels and the reference CRP concentrations (R2=0.866, P<.001). The intra-assay variabilities were 34.2%, 40.8%, and 24.5% for low, medium, and high CRP concentrations, respectively. The inter-assay variabilities were 46.5%, 38.3%, and 64.1% for low, medium, and high CRP concentrations, respectively. CONCLUSIONS: Our findings suggest that this new mobile CRP-testing device might be suitable for use in home-based care settings.


Assuntos
Imunoensaio , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Computadores de Mão , Estudos de Viabilidade , Feminino , Ouro , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
3.
Sensors (Basel) ; 17(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28036003

RESUMO

We describe a simple and affordable "Disposable electrode printed (DEP)-On-Go" sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device for the sensitive detection of major heavy metal ions, namely, mercury, cadmium, lead, arsenic, zinc, and copper with detection limits of 1.5, 2.6, 4.0, 5.0, 14.4, and, 15.5 µg·L-1, respectively. Importantly, the utility of this device is extended to detect multiple heavy metals simultaneously with well-defined voltammograms and similar sensitivity. Finally, "DEP-On-Go" was successfully applied to detect heavy metals in real environmental samples from groundwater, tap water, house dust, soil, and industry-processed rice and noodle foods. We evaluated the efficiency of this system with a linear correlation through inductively coupled plasma mass spectrometry, and the results suggested that this system can be reliable for on-site screening purposes. On-field applications using real samples of groundwater for drinking in the northern parts of India support the easy-to-detect, low-cost (<1 USD), rapid (within 5 min), and reliable detection limit (ppb levels) performance of our device for the on-site detection and monitoring of multiple heavy metals in resource-limited settings.

4.
Biosens Bioelectron ; 84: 120-5, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746799

RESUMO

Antibody-based immunosensors are relatively less accessible to a wide variety of unreachable targets, such as low-molecular-weight biomarkers that represent a rich untapped source of disease-specific diagnostic information. Here, we present a peptide aptamer-based electrochemical sensor technology called 'PEP-on-DEP' to detect less accessible target molecules, such as renin, and to improve the quality of life. Peptide-based aptamers represent a relatively smart class of affinity binders and show great promise in biosensor development. Renin is involved in the regulation of arterial blood pressure and is an emerging biomarker protein for predicting cardiovascular risk and prognosis. To our knowledge, no studies have described aptamer molecules that can be used as new potent probes for renin. Here, we describe a portable electrochemical biosensor platform based on the newly identified peptide aptamer molecules for renin. We constructed a randomized octapeptide library pool with diversified sequences and selected renin specific peptide aptamers using cDNA display technology. We identified a few peptide aptamer sequences with a KD in the µM binding affinity range for renin. Next, we grafted the selected peptide aptamers onto gold nanoparticles and detected renin in a one-step competitive assay using our originally developed DEP (Disposable Electrochemical Printed) chip and a USB powered portable potentiostat system. We successfully detected renin in as little as 300ngmL(-1) using the PEP-on-DEP method. Thus, the generation and characterization of novel probes for unreachable target molecules by merging a newly identified peptide aptamer with electrochemical transduction allowed for the development of a more practical biosensor that, in principle, can be adapted to develop a portable, low-cost and mass-producible biosensor for point-of-care applications.


Assuntos
Aptâmeros de Peptídeos/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Renina/análise , Biomarcadores/análise , Desenho de Equipamento , Ouro/química , Humanos , Nanopartículas Metálicas/química
5.
Analyst ; 137(15): 3422-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354200

RESUMO

Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.


Assuntos
DNA Viral/análise , Imunoensaio/métodos , Técnicas Analíticas Microfluídicas/métodos , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , DNA Viral/genética , Orthomyxoviridae/imunologia
6.
Sci Technol Adv Mater ; 10(3): 034604, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877299

RESUMO

The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA