Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1199105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492478

RESUMO

Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.

2.
Methods Mol Biol ; 2673: 317-327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258924

RESUMO

Interleukin 6 (IL6) is a major pro-inflammatory cytokine that plays a pivotal role in both innate and adaptive immune responses. In the past, a number of studies reported that high level of IL6 promotes the proliferation of cancer, autoimmune disorders, and cytokine storm in COVID-19 patients. Thus, it is extremely important to identify and remove the antigenic regions from a therapeutic protein or vaccine candidate that may induce IL6-associated immunotoxicity. In order to overcome this challenge, our group has developed a computational tool, IL6pred, for discovering IL6-inducing peptides in a vaccine candidate. The aim of this chapter is to describe the potential applications and methodology of IL6pred. It sheds light on the prediction, designing, and scanning modules of IL6pred webserver and standalone package ( https://webs.iiitd.edu.in/raghava/il6pred/ ).


Assuntos
COVID-19 , Vacinas , Humanos , Interleucina-6/genética , COVID-19/prevenção & controle , Citocinas/metabolismo , Internet
3.
J Comput Biol ; 30(2): 204-222, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251780

RESUMO

In the last three decades, a wide range of protein features have been discovered to annotate a protein. Numerous attempts have been made to integrate these features in a software package/platform so that the user may compute a wide range of features from a single source. To complement the existing methods, we developed a method, Pfeature, for computing a wide range of protein features. Pfeature allows to compute more than 200,000 features required for predicting the overall function of a protein, residue-level annotation of a protein, and function of chemically modified peptides. It has six major modules, namely, composition, binary profiles, evolutionary information, structural features, patterns, and model building. Composition module facilitates to compute most of the existing compositional features, plus novel features. The binary profile of amino acid sequences allows to compute the fraction of each type of residue as well as its position. The evolutionary information module allows to compute evolutionary information of a protein in the form of a position-specific scoring matrix profile generated using Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST); fit for annotation of a protein and its residues. A structural module was developed for computing of structural features/descriptors from a tertiary structure of a protein. These features are suitable to predict the therapeutic potential of a protein containing non-natural or chemically modified residues. The model-building module allows to implement various machine learning techniques for developing classification and regression models as well as feature selection. Pfeature also allows the generation of overlapping patterns and features from a protein. A user-friendly Pfeature is available as a web server python library and stand-alone package.


Assuntos
Proteínas , Software , Proteínas/química , Peptídeos , Sequência de Aminoácidos , Aprendizado de Máquina , Bases de Dados de Proteínas , Análise de Sequência de Proteína/métodos
4.
Drug Discov Today ; 26(9): 2138-2151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33892146

RESUMO

This article reviews more than 50 computational resources developed in past two decades for forecasting of antibiotic resistance (AR)-associated mutations, genes and genomes. More than 30 databases have been developed for AR-associated information, but only a fraction of them are updated regularly. A large number of methods have been developed to find AR genes, mutations and genomes, with most of them based on similarity-search tools such as BLAST and HMMER. In addition, methods have been developed to predict the inhibition potential of antibiotics against a bacterial strain from the whole-genome data of bacteria. This review also discuss computational resources that can be used to manage the treatment of AR-associated diseases.


Assuntos
Descoberta de Drogas , Farmacorresistência Bacteriana , Animais , Antibacterianos/uso terapêutico , Biologia Computacional , Bases de Dados Factuais , Humanos
5.
Brief Bioinform ; 22(2): 936-945, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33034338

RESUMO

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that stimulates acute phase responses, hematopoiesis and specific immune reactions. Recently, it was found that the IL-6 plays a vital role in the progression of COVID-19, which is responsible for the high mortality rate. In order to facilitate the scientific community to fight against COVID-19, we have developed a method for predicting IL-6 inducing peptides/epitopes. The models were trained and tested on experimentally validated 365 IL-6 inducing and 2991 non-inducing peptides extracted from the immune epitope database. Initially, 9149 features of each peptide were computed using Pfeature, which were reduced to 186 features using the SVC-L1 technique. These features were ranked based on their classification ability, and the top 10 features were used for developing prediction models. A wide range of machine learning techniques has been deployed to develop models. Random Forest-based model achieves a maximum AUROC of 0.84 and 0.83 on training and independent validation dataset, respectively. We have also identified IL-6 inducing peptides in different proteins of SARS-CoV-2, using our best models to design vaccine against COVID-19. A web server named as IL-6Pred and a standalone package has been developed for predicting, designing and screening of IL-6 inducing peptides (https://webs.iiitd.edu.in/raghava/il6pred/).


Assuntos
COVID-19/fisiopatologia , Simulação por Computador , Interleucina-6/biossíntese , Peptídeos/metabolismo , COVID-19/virologia , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Interleucina-6/fisiologia , Aprendizado de Máquina , SARS-CoV-2/isolamento & purificação
7.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250014

RESUMO

PRRDB 2.0 is an updated version of PRRDB that maintains comprehensive information about pattern-recognition receptors (PRRs) and their ligands. The current version of the database has ~2700 entries, which are nearly five times of the previous version. It contains extensive information about 467 unique PRRs and 827 pathogens-associated molecular patterns (PAMPs), manually extracted from ~600 research articles. It possesses information about PRRs and PAMPs that has been extracted manually from research articles and public databases. Each entry provides comprehensive details about PRRs and PAMPs that includes their name, sequence, origin, source, type, etc. We have provided internal and external links to various databases/resources (like Swiss-Prot, PubChem) to obtain further information about PRRs and their ligands. This database also provides links to ~4500 experimentally determined structures in the protein data bank of various PRRs and their complexes. In addition, 110 PRRs with unknown structures have also been predicted, which are important in order to understand the structure-function relationship between receptors and their ligands. Numerous web-based tools have been integrated into PRRDB 2.0 to facilitate users to perform different tasks like (i) extensive searching of the database; (ii) browsing or categorization of data based on receptors, ligands, source, etc. and (iii) similarity search using BLAST and Smith-Waterman algorithm.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Ligantes , Receptores de Reconhecimento de Padrão , Software , Animais , Gerenciamento de Dados , Humanos
8.
BMC Genomics ; 19(Suppl 9): 985, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999860

RESUMO

BACKGROUND: Fragile sites are the chromosomal regions that are susceptible to breakage, and their frequency varies among the human population. Based on the frequency of fragile site induction, they are categorized as common and rare fragile sites. Common fragile sites are sensitive to replication stress and often rearranged in cancer. Rare fragile sites are the archetypal trinucleotide repeats. Fragile sites are known to be involved in chromosomal rearrangements in tumors. Human miRNA genes are also present at fragile sites. A better understanding of genes and miRNAs lying in the fragile site regions and their association with disease progression is required. RESULT: HumCFS is a manually curated database of human chromosomal fragile sites. HumCFS provides useful information on fragile sites such as coordinates on the chromosome, cytoband, their chemical inducers and frequency of fragile site (rare or common), genes and miRNAs lying in fragile sites. Protein coding genes in the fragile sites were identified by mapping the coordinates of fragile sites with human genome Ensembl (GRCh38/hg38). Genes present in fragile sites were further mapped to DisGenNET database, to understand their possible link with human diseases. Human miRNAs from miRBase was also mapped on fragile site coordinates. In brief, HumCFS provides useful information about 125 human chromosomal fragile sites and their association with 4921 human protein-coding genes and 917 human miRNA's. CONCLUSION: User-friendly web-interface of HumCFS and hyper-linking with other resources will help researchers to search for genes, miRNAs efficiently and to intersect the relationship among them. For easy data retrieval and analysis, we have integrated standard web-based tools, such as JBrowse, BLAST etc. Also, the user can download the data in various file formats such as text files, gff3 files and Bed-format files which can be used on UCSC browser. Database URL: http://webs.iiitd.edu.in/raghava/humcfs/.


Assuntos
Sítios Frágeis do Cromossomo , Cromossomos Humanos , Bases de Dados Genéticas/estatística & dados numéricos , Predisposição Genética para Doença , Genoma Humano , Humanos
9.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753476

RESUMO

Immunosuppression proved as a captivating therapy in several autoimmune disorders, asthma as well as in organ transplantation. Immunosuppressive peptides are specific for reducing efficacy of immune system with wide range of therapeutic implementations. `ImmunoSPdb' is a comprehensive, manually curated database of around 500 experimentally verified immunosuppressive peptides compiled from 79 research article and 32 patents. The current version comprises of 553 entries providing extensive information including peptide name, sequence, chirality, chemical modification, origin, nature of peptide, its target as well as mechanism of action, amino acid frequency and composition, etc. Data analysis revealed that most of the immunosuppressive peptides are linear (91%), are shorter in length i.e. up to 20 amino acids (62%) and have L form of amino acids (81%). About 30% peptide are either chemically modified or have end terminal modification. Most of the peptides either are derived from proteins (41%) or naturally (27%) exist. Blockage of potassium ion channel (24%) is one a major target for immunosuppressive peptides. In addition, we have annotated tertiary structure by using PEPstrMOD and I-TASSER. Many user-friendly, web-based tools have been integrated to facilitate searching, browsing and analyzing the data. We have developed a user-friendly responsive website to assist a wide range of users.


Assuntos
Bases de Dados de Proteínas , Peptídeos/imunologia , Modelos Moleculares , Peptídeos/química
10.
Front Immunol ; 9: 2280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356876

RESUMO

Evolution has led to the expansion of survival strategies in pathogens including bacteria and emergence of drug resistant strains proved to be a major global threat. Vaccination is a promising strategy to protect human population. Reverse vaccinology is a more robust vaccine development approach especially with the availability of large-scale sequencing data and rapidly dropping cost of the techniques for acquiring such data from various organisms. The present study implements an immunoinformatic approach for screening the possible antigenic proteins among various pathogenic bacteria to systemically arrive at epitope-based vaccine candidates against 14 pathogenic bacteria. Thousand four hundred and fifty nine virulence factors and Five hundred and forty six products of essential genes were appraised as target proteins to predict potential epitopes with potential to stimulate different arms of the immune system. To address the self-tolerance, self-epitopes were identified by mapping on 1000 human proteome and were removed. Our analysis revealed that 21proteins from 5 bacterial species were found as virulent as well as essential to their survival, proved to be most suitable vaccine target against these species. In addition to the prediction of MHC-II binders, B cell and T cell epitopes as well as adjuvants individually from proteins of all 14 bacterial species, a stringent criteria lead us to identify 252 unique epitopes, which are predicted to be T-cell epitopes, B-cell epitopes, MHC II binders and Vaccine Adjuvants. In order to provide service to scientific community, we developed a web server VacTarBac for designing of vaccines against above species of bacteria. This platform integrates a number of tools that includes visualization tools to present antigenicity/epitopes density on an antigenic sequence. These tools will help users to identify most promiscuous vaccine candidates in a pathogenic antigen. This server VacTarBac is available from URL (http://webs.iiitd.edu.in/raghava/vactarbac/).


Assuntos
Antígenos de Bactérias/imunologia , Bactérias/imunologia , Vacinas Bacterianas/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Internet , Software , Humanos , Proteoma/imunologia , Vacinas de Subunidades Antigênicas/imunologia
11.
Front Pharmacol ; 9: 954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210341

RESUMO

Tuberculosis is one of the leading cause of death worldwide, particularly due to evolution of drug resistant strains. Antitubercular peptides may provide an alternate approach to combat antibiotic tolerance. Sequence analysis reveals that certain residues (e.g., Lysine, Arginine, Leucine, Tryptophan) are more prevalent in antitubercular peptides. This study describes the models developed for predicting antitubercular peptides by using sequence features of the peptides. We have developed support vector machine based models using different sequence features like amino acid composition, binary profile of terminus residues, dipeptide composition. Our ensemble classifiers that combines models based on amino acid composition and N5C5 binary pattern, achieves highest Acc of 73.20% with 0.80 AUROC on our main dataset. Similarly, the ensemble classifier achieved maximum Acc 75.62% with 0.83 AUROC on secondary dataset. Beside this, hybrid model achieves Acc of 75.87 and 78.54% with 0.83 and 0.86 AUROC on main and secondary dataset, respectively. In order to facilitate scientific community in designing of antitubercular peptides, we implement above models in a user friendly webserver (http://webs.iiitd.edu.in/raghava/antitbpred/).

12.
Front Microbiol ; 9: 725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706944

RESUMO

Designing drug delivery vehicles using cell-penetrating peptides is a hot area of research in the field of medicine. In the past, number of in silico methods have been developed for predicting cell-penetrating property of peptides containing natural residues. In this study, first time attempt has been made to predict cell-penetrating property of peptides containing natural and modified residues. The dataset used to develop prediction models, include structure and sequence of 732 chemically modified cell-penetrating peptides and an equal number of non-cell penetrating peptides. We analyzed the structure of both class of peptides and observed that positive charge groups, atoms, and residues are preferred in cell-penetrating peptides. In this study, models were developed to predict cell-penetrating peptides from its tertiary structure using a wide range of descriptors (2D, 3D descriptors, and fingerprints). Random Forest model developed by using PaDEL descriptors (combination of 2D, 3D, and fingerprints) achieved maximum accuracy of 95.10%, MCC of 0.90 and AUROC of 0.99 on the main dataset. The performance of model was also evaluated on validation/independent dataset which achieved AUROC of 0.98. In order to assist the scientific community, we have developed a web server "CellPPDMod" for predicting the cell-penetrating property of modified peptides (http://webs.iiitd.edu.in/raghava/cellppdmod/).

14.
Adv Protein Chem Struct Biol ; 112: 221-263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29680238

RESUMO

The prolonged conventional approaches of drug screening and vaccine designing prerequisite patience, vigorous effort, outrageous cost as well as additional manpower. Screening and experimentally validating thousands of molecules for a specific therapeutic property never proved to be an easy task. Similarly, traditional way of vaccination includes administration of either whole or attenuated pathogen, which raises toxicity and safety issues. Emergence of sequencing and recombinant DNA technology led to the epitope-based advanced vaccination concept, i.e., small peptides (epitope) can stimulate specific immune response. Advent of bioinformatics proved to be an adjunct in vaccine and drug designing. Genomic study of pathogens aid to identify and analyze the protective epitope. A number of in silico tools have been developed to design immunotherapy as well as peptide-based drugs in the last two decades. These tools proved to be a catalyst in drug and vaccine designing. This review solicits therapeutic peptide databases as well as in silico tools developed for designing peptide-based vaccine and drugs.


Assuntos
Simulação por Computador , Bases de Dados de Proteínas , Desenho de Fármacos , Peptídeos/síntese química , Vacinas/síntese química , Sistemas de Liberação de Medicamentos , Humanos , Peptídeos/química , Peptídeos/farmacologia , Vacinas/química , Vacinas/farmacologia
15.
PLoS One ; 12(7): e0181748, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759605

RESUMO

THPdb (http://crdd.osdd.net/raghava/thpdb/) is a manually curated repository of Food and Drug Administration (FDA) approved therapeutic peptides and proteins. The information in THPdb has been compiled from 985 research publications, 70 patents and other resources like DrugBank. The current version of the database holds a total of 852 entries, providing comprehensive information on 239 US-FDA approved therapeutic peptides and proteins and their 380 drug variants. The information on each peptide and protein includes their sequences, chemical properties, composition, disease area, mode of activity, physical appearance, category or pharmacological class, pharmacodynamics, route of administration, toxicity, target of activity, etc. In addition, we have annotated the structure of most of the protein and peptides. A number of user-friendly tools have been integrated to facilitate easy browsing and data analysis. To assist scientific community, a web interface and mobile App have also been developed.


Assuntos
Bases de Dados de Proteínas , Peptídeos/uso terapêutico , Proteínas/uso terapêutico , Internet , Aplicativos Móveis , Peptídeos/química , Linguagens de Programação , Proteínas/química , Software , Estados Unidos , United States Food and Drug Administration , Interface Usuário-Computador
16.
Sci Rep ; 7(1): 1511, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473704

RESUMO

CancerPDF (Cancer Peptidome Database of bioFluids) is a comprehensive database of endogenous peptides detected in the human biofluids. The peptidome patterns reflect the synthesis, processing and degradation of proteins in the tissue environment and therefore can act as a gold mine to probe the peptide-based cancer biomarkers. Although an extensive data on cancer peptidome has been generated in the recent years, lack of a comprehensive resource restrains the facility to query the growing community knowledge. We have developed the cancer peptidome resource named CancerPDF, to collect and compile all the endogenous peptides isolated from human biofluids in various cancer profiling studies. CancerPDF has 14,367 entries with 9,692 unique peptide sequences corresponding to 2,230 unique precursor proteins from 56 high-throughput studies for ~27 cancer conditions. We have provided an interactive interface to query the endogenous peptides along with the primary information such as m/z, precursor protein, the type of cancer and its regulation status in cancer. To add-on, many web-based tools have been incorporated, which comprise of search, browse and similarity identification modules. We consider that the CancerPDF will be an invaluable resource to unwind the potential of peptidome-based cancer biomarkers. The CancerPDF is available at the web address http://crdd.osdd.net/raghava/cancerpdf/ .


Assuntos
Líquidos Corporais/metabolismo , Bases de Dados de Proteínas , Neoplasias/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Humanos , Internet , Peptídeos/química , Ferramenta de Busca
17.
Sci Rep ; 7: 42851, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211521

RESUMO

In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews's Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server "IL-10pred", standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/).


Assuntos
Imunossupressores/química , Interleucina-10/metabolismo , Peptídeos/química , Simulação por Computador , Desenho Assistido por Computador , Humanos , Imunossupressores/imunologia , Aplicativos Móveis , Peptídeos/imunologia , Máquina de Vetores de Suporte , Navegador
18.
Brief Bioinform ; 18(3): 467-478, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016393

RESUMO

The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Peptídeos , Vacinas de Subunidades Antigênicas
19.
Sci Rep ; 6: 32713, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27633273

RESUMO

Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.


Assuntos
Filogenia , Proteômica , Software , Infecção por Zika virus/terapia , Zika virus/classificação , Zika virus/genética , Animais , Códon/genética , Genoma Viral , Glicosilação , Humanos , Técnicas de Diagnóstico Molecular , Anotação de Sequência Molecular , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Infecção por Zika virus/virologia
20.
Nucleic Acids Res ; 44(D1): D1119-26, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527728

RESUMO

SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Peptídeos/química , Peptídeos/uso terapêutico , Anti-Hipertensivos/farmacologia , Antineoplásicos/farmacologia , Anotação de Sequência Molecular , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA