Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703577

RESUMO

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Assuntos
Florestas , Árvores , Biomassa , Carbono/metabolismo , Ciclo do Carbono , Ecossistema , Árvores/fisiologia
2.
Biol Futur ; 73(1): 119-131, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230673

RESUMO

Forest ecosystems are sinks of atmospheric carbon and maintain annual temperature. On the other hand, climate change entails changes in all the biota structures and functions, including forest cover and biomass. Temperature and precipitation are the main deterministic factors in species biomass change. Therefore, we compared the biomass of Betula spp. and Abies spp. at the stand level along trans-Eurasian hydrothermal gradients. We analyzed the biomass database of Betula and Abies forest stands in Eurasia. Climate variables explained about 14 and 16% of the total biomass variability in Betula and Abies, respectively. Our results showed that increasing temperature and precipitation positively impacted fir biomass. However, a negative impact was reported on needles and branches due to insufficient humidity. In birch forests, positive trends occur from cold to warm climate zones, but only when there is inadequate water supply. A negative correlation was reported in the moist areas. Most of the birch biomass components only increased in the precipitation gradient in cold climate zones. This positive trend transformed to negative in warm zones (except for branches). We modeled the possible temporal biomass change of tree species based on its territorial pattern in Eurasia using the principle of space-for-time substitution. The developments of models for the main forest-forming species of Eurasia allow us to predict changes in the productivity of the forest cover of Eurasia.


Assuntos
Abies , Betula , Biomassa , Ecossistema , Florestas , Temperatura
3.
Plants (Basel) ; 9(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977675

RESUMO

Currently, the problem of the impact of climate change on the productivity of forest ecosystems and their carbon-depositing capacity is far from being solved. Therefore, this paper presents the models for the stand biomass of the two-needled subgenus' (Pinus spp.) and the genus Picea spp.'s trends along the trans-Eurasian hydrothermal gradients, designed for pure stands in a number of 2110- and 870-sample plots with Pinus and Picea correspondingly. It was found that in the case of an increase in mean winter temperatures by 1 °C, pine and spruce respond by increasing the biomass of most components, and in the case of an increase in the annual sum of precipitation by 100 mm, the total, aboveground, stem and root biomasses of pine and spruce react the same way, but crown biomass reacts in the opposite way. Therefore, all identified trends are species-specific.

4.
Sci Data ; 4: 170070, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509911

RESUMO

The most comprehensive dataset of in situ destructive sampling measurements of forest biomass in Eurasia have been compiled from a combination of experiments undertaken by the authors and from scientific publications. Biomass is reported as four components: live trees (stem, bark, branches, foliage, roots); understory (above- and below ground); green forest floor (above- and below ground); and coarse woody debris (snags, logs, dead branches of living trees and dead roots), consisting of 10,351 unique records of sample plots and 9,613 sample trees from ca 1,200 experiments for the period 1930-2014 where there is overlap between these two datasets. The dataset also contains other forest stand parameters such as tree species composition, average age, tree height, growing stock volume, etc., when available. Such a dataset can be used for the development of models of biomass structure, biomass extension factors, change detection in biomass structure, investigations into biodiversity and species distribution and the biodiversity-productivity relationship, as well as the assessment of the carbon pool and its dynamics, among many others.


Assuntos
Biomassa , Florestas , Ásia , Ecossistema , Europa (Continente)
5.
Glob Chang Biol ; 23(1): 177-190, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381364

RESUMO

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Assuntos
Ciclo do Carbono , Florestas , Tecnologia de Sensoriamento Remoto , Biomassa , Carbono , Árvores
6.
New Phytol ; 208(3): 736-49, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26197869

RESUMO

We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio.


Assuntos
Biomassa , Filogenia , Desenvolvimento Vegetal , Plantas/anatomia & histologia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA