Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 381(6659): 748-753, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590351

RESUMO

During the consumption of alkanes, Alcanivorax borkumensis will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.


Assuntos
Alcanivoraceae , Alcanos , Biofilmes , Petróleo , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Petróleo/metabolismo , Biodegradação Ambiental
2.
Phys Rev Lett ; 99(15): 157801, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995213

RESUMO

We use double-emulsion drops to experimentally investigate the defect structures of spherical shells of nematic liquid crystals. We uncover a rich scenario of coexisting defect structures dictated by the unavoidable finite thickness of even the thinnest shell and by the thickness variation around the sphere. These structures are characterized by a varying number of disclination lines and pairs of surface point defects on the inner and outer surfaces of the nematic shell. In the limit of very thick shells the defect structure ultimately merges with that of a bulk nematic liquid crystal drop.

3.
Science ; 308(5721): 537-41, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15845850

RESUMO

Double emulsions are highly structured fluids consisting of emulsion drops that contain smaller droplets inside. Although double emulsions are potentially of commercial value, traditional fabrication by means of two emulsification steps leads to very ill-controlled structuring. Using a microcapillary device, we fabricated double emulsions that contained a single internal droplet in a core-shell geometry. We show that the droplet size can be quantitatively predicted from the flow profiles of the fluids. The double emulsions were used to generate encapsulation structures by manipulating the properties of the fluid that makes up the shell. The high degree of control afforded by this method and the completely separate fluid streams make this a flexible and promising technique.

4.
J Am Chem Soc ; 123(35): 8564-72, 2001 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-11525664

RESUMO

The distance and relative orientation of the C5' methyl group of 5'-deoxyadenosine and the substrate radical in vitamin B(12) coenzyme-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The (S)-2-aminopropanol-generated substrate radical catalytic intermediate was prepared by cryotrapping steady-state mixtures of enzyme in which catalytically exchangeable hydrogen sites in the active site had been labeled by previous turnover on (2)H(4)-ethanolamine. Simulation of the time- and frequency-domain ESEEM requires two types of coupled (2)H. The strongly coupled (2)H has an effective dipole distance (r(eff)) of 2.2 A, and isotropic coupling constant (A(iso)) of -0.35 MHz. The weakly coupled (2)H has r(eff) = 3.8 A and A(iso) = 0 MHz. The best (2)H ESEEM time- and frequency-domain simulations are achieved with a model in which the hyperfine couplings arise from one strongly coupled hydrogen site and two equivalent weakly coupled hydrogen sites located on the C5' methyl group of 5'-deoxyadenosine. This model indicates that the unpaired electron on C1 of the substrate radical and C5' are separated by 3.2 A and are thus at closest contact. The close proximity of C1 and C5' indicates that C5' of the 5'-deoxyadenosyl moiety directly mediates radical migration between cobalt in cobalamin and the substrate/product site over a distance of 5-7 A in the active site of ethanolamine deaminase.


Assuntos
Cobamidas/química , Desoxiadenosinas/química , Etanolamina Amônia-Liase/química , Sítios de Ligação , Cobamidas/metabolismo , Desoxiadenosinas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Etanolamina Amônia-Liase/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Modelos Químicos , Salmonella typhimurium/química , Salmonella typhimurium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA