Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548613

RESUMO

Sodium Dodecyl Sulfate (SDS) is an anionic surfactant, extensively used in detergents, household and personal care products, as well as in industrial processes. The present study aimed to disclose the potential toxicological effects of SDS exposure under environmentally relevant concentrations (0, 0.1, 1, 3, and 10 mg L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems, and energy balance) of two marine autotrophs: the diatom Phaeodactylum tricornutum and the macroalgae Ulva lactuca. A growth rate (GR) reduction in P. tricornutum was observed with a classic dose-response effect towards the highest applied concentration, while a GR increase occurred in U. lactuca. Regarding photochemistry, the decrease in the fluorescence of the OJIP curves and laser-induced fluorescence allowed a better separation between SDS treatments in U. lactuca compared with P. tricornutum. Although all pigments significantly decreased in U. lactuca at the highest concentrations (except for antheraxanthin), no significant variations occurred in P. tricornutum. On the other hand, changes in fatty acid content were observed in P. tricornutum but not in U. lactuca. In terms of classical biomarker assessment, a dose-effect relationship of individual biomarkers versus SDS dose applied; U. lactuca displayed a higher number of biomarker candidates, including those in distinct metabolic pathways, increasing its usefulness for ecotoxicological applications. By evaluating the potential application of optical and biochemical traits, it was evident that the fatty acid profiles of the different exposure groups are excellent candidates in P. tricornutum, concomitant with the characteristics of this anionic surfactant. On the other hand, the results presented by laser-induced fluorescence and some parameters of PAM fluorometry in U. lactuca may be an advantage in the field, offering non-invasive, fast, easy-to-use, high-throughput screening techniques as excellent tools for ecotoxicology assessment.

2.
Toxics ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36006109

RESUMO

The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 µg·L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 µg·L-1, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 µg·L-1). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.

3.
Environ Monit Assess ; 188(5): 285, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075310

RESUMO

This work reports changes on cell number, growth rate, trace element content, chlorophyll a (Chl a) and carotenoid concentrations, and laser-induced fluorescence (LIF) spectra of Phaeodactylum tricornutum exposed to Co, Ni, Cu, Zn, Cd, Hg, Pb, and a mixture of all elements combined (Mix). The total levels of trace elements associated with the cells were significantly higher in the exposed than in control ones. Concomitantly, specific cell growth was significantly lower in exposed P. tricornutum, suggesting that trace elements affected the microalgae physiology. The LIF emission spectra showed two typical emission bands in red (683-698 nm) and far-red (725-730 nm) regions. Deviations in LIF spectra and changes in F685/F735 ratio were investigated as indicators of trace element-induced changes. Fluorescence intensity emitted by exposed microalgae decreased in far-red region when compared to control cells, suggesting Chl a damage and impairment of pigment biosynthesis pathways by trace elements, confirmed by Chl a and carotenoid concentration decrease. Significant increase in F685/F735 ratio was detected for all elements except Zn and more accentuated for Co, Hg, and Mix. Significant deviations in wavelength emission maxima in red region were also more significant (between 8 and 13 nm) for Co, Hg, and Mix. Growth changes agreed with deviations in LIF spectra and F685/F735 ratio, supporting their applicability as indicators. This study clearly shows F685/F735 ratio and the deviations in wavelength emission maxima as adequate trace element stress indicators and P. tricornutum as a promising biomonitor model species. LIF-based techniques can be used as time-saving, highly sensitive, and effective alternative tool for the detection of trace element stress, with potential for remote sensing and trace element contamination screening in marine coastal areas.


Assuntos
Monitoramento Ambiental/métodos , Oligoelementos/toxicidade , Bioensaio , Clorofila/metabolismo , Clorofila A , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Fluorescência , Fotossíntese/efeitos dos fármacos , Espectrometria de Fluorescência , Poluentes Químicos da Água/toxicidade
4.
J Opt Soc Am A Opt Image Sci Vis ; 29(4): 457-62, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22472821

RESUMO

A model of steady-state X-shaped wave generation by a superluminal (supersonic) pointlike source infinitely moving along a straight line is extended to a more realistic causal scenario of a source pulse launched at time zero and propagating rectilinearly at a constant superluminal speed. In the case of an infinitely short (delta) pulse, the new model yields an analytical solution, corresponding to the propagation-invariant X-shaped wave clipped by a droplet-shaped support, which perpetually expands along the propagation and transversal directions, thus tending the droplet-shaped wave to the X-shaped one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA