Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(10)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37408216

RESUMO

Advanced glycation end-products (AGEs) are increased under hyperglycemia in vivo and are associated with the onset of diabetes. According to previous studies, AGEs exacerbate inflammatory diseases. However, the mechanism by which AGEs aggravate osteoblast inflammation remains unknown. Therefore, the aim of this study was to determine the effects of AGEs on the production of inflammatory mediators in MC3T3-E1 cells and the underlying molecular mechanisms. Co-stimulation with AGEs and lipopolysaccharide (LPS) was found to increase the mRNA and protein levels of cyclooxygenase 2 (COX2), interleukin-1α (IL-1α), S100 calcium-binding protein A9 (S100A9), and the production of prostaglandin E2 (PGE2) compared to no stimulation (untreated control) or individual stimulation with LPS or AGEs. In contrast, the phospholipase C (PLC) inhibitor, U73122, inhibited these stimulatory effects. Co-stimulation with AGEs and LPS also increased the nuclear translocation of nuclear factor-kappa B (NF-κB) compared to no stimulation (untreated control) or individual stimulation with LPS or AGE. However, this increase was inhibited by U73122. Co-stimulation with AGEs and LPS-induced phosphorylated phospholipase Cγ1 (p-PLCγ1) and phosphorylated c-Jun N-terminal kinase (p-JNK) expression compared to no stimulation or individual stimulation with LPS or AGEs. U73122 inhibited the effects induced by co-stimulation. siPLCγ1 did not increase the expression of p-JNK and the translocation of NF-κB. Overall, co-stimulation with AGEs and LPS may promote inflammation mediators in MC3T3-E1 cells by activating the nuclear translocation of NF-κB via PLCγ1-JNK activation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Produtos Finais de Glicação Avançada/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Animais , Camundongos
2.
Eur J Oral Sci ; 130(1): e12831, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674322

RESUMO

Little information is available about enamel wear caused by zirconia brackets, an inadvertent side effect of orthodontic treatment. The purpose of this study was to examine potential enamel damage induced by contact with zirconia brackets. Sliding and impact wear simulations were performed using bovine enamel specimens positioned at a 25° slant to a zirconium ball to determine wear behaviour. Different chewing patterns, tapping and grinding, were simulated. Specimens were profiled using confocal laser scanning microscopy, and the mean maximum depth and surface roughness were measured. Scanning electron microscopy was also performed. The mean maximum depth of wear values differed according to the number of mastication cycles, with a higher number of cycles producing higher depths of wear. The facet wear depth was significantly greater with the tapping pattern than with the grinding pattern. Scanning electron microscopic observation of the wear facets revealed that surface textures at the edges were rougher than those at the centre of all facets. The results of this study indicated that enamel wear was induced by contact with zirconia brackets during the early period of mastication, and that the patterns and number of cycles of mastication affected the wear progression of enamel.


Assuntos
Porcelana Dentária , Zircônio , Animais , Bovinos , Esmalte Dentário , Mastigação , Teste de Materiais , Propriedades de Superfície , Zircônio/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA