Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 130(6): 650-658, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861594

RESUMO

Previously, we established a three-dimensional (3D) bone marrow culture system that maintains normal hematopoiesis, including prolongation of hematopoietic stem cell proliferation and differentiation. To analyze the role of bone marrow stromal cells that compose the microenvironment, the growth of a leukemic cell line (K562) in the 3D condition and with arginine deprivation stress was compared with two-dimensional stromal cell monolayers (2D) and suspension cultures without stromal cells (stroma (-)). Arginine is essential for the proliferation and differentiation of erythrocytes. The proliferation and differentiation of K562 cells cultured in the 3D system were stabilized compared with cells in 2D or stroma (-). Furthermore, the number of K562 cells in the G0/G1 phase in 3D was increased significantly compared with cells grown in 2D or stroma (-). Interestingly, the mRNA expression of various hematopoietic growth factors of stromal cells in 3D was not different from 2D, even though supportive activity on K562 cell growth was observed in the arginine deprivation condition. Thus, the hematopoietic microenvironment involves multi-dimensional and complex systems including biochemical and physiochemical factors that regulate quiescence, proliferation, activation, and differentiation of normal hematopoietic cells and cloned leukemic cells. Our 3D culture system may be a valuable new tool for investigating leukemic cell-stromal cell interactions in vitro.


Assuntos
Arginina/deficiência , Técnicas de Cultura de Células/métodos , Leucemia/patologia , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo , Comunicação Celular , Diferenciação Celular , Divisão Celular , Proliferação de Células , Técnicas de Cocultura , Humanos , Células K562 , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA