Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405656, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873872

RESUMO

The introduction of a colorless function to organic electronic devices allows responses to light in the near-infrared (NIR) region and is expected to broaden the applications of these devices. However, the development of a colorless NIR dye remains a challenge due to the lack of a rational molecular design for controlling electronic transitions. In this study, to suppress the π-π* transitions in the visible region, polycyclic donor-acceptor-donor π-conjugated molecules with boron bridges (Py-FNTz-B and IP-FNTz-B) are designed and synthesized, which contain pyrrole or indenopyrrole as donor units with fluorinated naphthobisthiadiazole (FNTz) as an acceptor unit. The pyrrole end-capped Py-FNTz-B shows an absorption band in the NIR region without distinct visible-light absorption, which has led to the establishment of colorless characteristics. The indenopyrrole end-capped IP-FNTz-B shows a narrow optical energy gap of 0.87 eV in films. Time-resolved microwave conductance and field-effect transistors demonstrate the semiconducting characteristics of these molecules, and Py-FNTz-B-based devices function as NIR phototransistors. Theoretical analyses indicate that the combination of a polyene-like electronic structure with orbital symmetry is important to obtain NIR wavelength-selective absorption. This study suggests that a molecular design based on electronic structures can be effective in the development of colorless NIR-absorbing dyes for organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA