Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Methods Appl Fluoresc ; 9(3)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34044380

RESUMO

Optical biopsies bring the microscope to the patient rather than the tissue to the microscope, and may complement or replace the tissue-harvesting component of the traditional biopsy process with its associated risks. In general, optical biopsies are limited by the lack of endogenous tissue contrast and the small number of clinically approvedin vivodyes. This study tests multiple FDA-approved drugs that have structural similarity to research dyes as off-labelin situfluorescent alternatives to standardex vivohematoxylin & eosin tissue stain. Numerous drug-dye combinations shown here may facilitate relatively safe and fastin situor possiblyin vivostaining of tissue, enabling real-time optical biopsies and other advanced microscopy technologies, which have implications for the speed and performance of tissue- and cellular-level diagnostics.


Assuntos
Biópsia/métodos , Corantes Fluorescentes/química , Uso Off-Label , Imagem Óptica/métodos , Preparações Farmacêuticas/química , Animais , Bovinos , Simulação por Computador , Humanos , Pulmão/diagnóstico por imagem , Estudo de Prova de Conceito , Ovinos
2.
Biomed Eng Educ ; 1(2): 301-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141720

RESUMO

Engineering design courses are particularly challenging to deliver in online or distance modalities because of the hands-on, collaborative nature of the design process and the need for physical resources and work spaces. In this work, we describe how we rapidly transformed two design courses in the middle two years of the biomedical engineering (BME) program to an online format during the 2019 coronavirus pandemic. In addition to time and safety constraints, we identified access to design spaces with biochemistry, computing, electronic, computing, and manufacturing tools, and team-based learning as major challenges to distance learning in BME design courses. To this end, we mapped and translated various course and design activities to an online environment using a combination of customized at-home laboratory kits and distributed team structures. Drawing upon our pilot experience as well as principles from online and adult learning theories, we offer an overview of strategies to retain hands-on and team-based activities and rapidly implement BME design courses in online or distance modalities.

3.
Acta Biomater ; 88: 131-140, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797107

RESUMO

Glaucoma is the second leading cause of irreversible blindness in the world with a higher prevalence in those of African Descent (AD) and Hispanic Ethnicity (HE) than in those of European Descent (ED). The objective of this study was to investigate the pressure dependent biomechanical response of the lamina cribrosa (LC) in normal human donor tissues from these racioethnic backgrounds. Pressure inflation tests were performed on 24 human LCs (n = 9 AD, n = 6 ED, and n = 9 HE) capturing the second harmonic generation (SHG) signal of collagen at 5, 15, 30, and 45 mmHg from an anterior view. A non-rigid image registration technique was utilized to determine the 3D displacement field in each LC from which 3D Green strains were calculated. The peak shear strain in the superior quadrant of the LC in those of ED was significantly higher than in those of AD and HE (p-value = 0.005 & 0.034, respectively) where ED = 0.017 [IQR = 0.012-0.027], AD = 0.0002 [IQR = -0.001-0.007], HE = 0.0016 [IQR = -0.002-0.012]). There were also significant differences in the regional strain heterogeneity in those of AD and HE that were absent in those of ED. This work represents, to our knowledge, the first ex-vivo study identifying significant differences in the biomechanical response of the LC in populations at increased risk of glaucoma. Future work will be necessary to assess if and how these differences play a role in predisposing those of Hispanic Ethnicity and African Descent to the onset and/or progression of primary open angle glaucoma. STATEMENT OF SIGNIFICANCE: Glaucoma is the second leading cause of irreversible blindness in the world and occurs more frequently in those of African Descent and Hispanic Ethnicity than in those of European Descent. To date, there has been no ex-vivo study quantifying differences in the biomechanical response of the non-glaucomatous lamina cribrosa (LC) across these racioethnic backgrounds. In this work we report, for the first time, differences in the pressure dependent biomechanical response of LC across different racioethnic groups as quantified using nonlinear optical microscopy. This study lays the foundation for future work investigating if and how these differences may play a role in predisposing those at increased risk to the onset and/or progression of primary open angle glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Pressão Intraocular , Esclera , Estresse Mecânico , Idoso , Feminino , Glaucoma de Ângulo Aberto/patologia , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclera/patologia , Esclera/fisiopatologia
4.
Sci Rep ; 7(1): 13349, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042677

RESUMO

Confocal fluorescence microscopy is often used in brain imaging experiments, however conventional confocal microscopes are limited in their field of view, working distance, and speed for high resolution imaging. We report here the development of a novel high resolution, high speed, long working distance, and large field of view confocal fluorescence microscope (H2L2-CFM) with the capability of multi-region and multifocal imaging. To demonstrate the concept, a 0.5 numerical aperture (NA) confocal fluorescence microscope is prototyped with a 3 mm × 3 mm field of view and 12 mm working distance, an array of 9 beams is scanned over the field of view in 9 different regions to speed up the acquisition time by a factor of 9. We test this custom designed confocal fluorescence microscope for future use with brain clarification methods to image large volumes of the brain at subcellular resolution. This multi-region and multi-spot imaging method can be used in other imaging modalities, such as multiphoton microscopes, and the field of view can be extended well beyond 12 mm × 12 mm.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Desenho de Equipamento , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação
5.
J Biomed Opt ; 22(3): 36013, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334332

RESUMO

A miniature wide-field multispectral endoscopic imaging system was developed enabling reflectance and fluorescence imaging over a broad wavelength range. At 0.8-mm diameter, the endoscope can be utilized for natural orifice imaging in small lumens such as the fallopian tubes. Five lasers from 250 to 642 nm are coupled into a 125 - ? m diameter multimode fiber and transmitted to the endoscope distal tip for illumination. Ultraviolet and blue wavelengths excite endogenous fluorophores, which can provide differential fluorescence emission images for health and disease. Visible wavelengths provide reflectance images that can be combined for pseudo-white-light imaging and navigation. Imaging is performed by a 300 - ? m diameter three-element lens system connected to a 3000-element fiber. The lens system was designed for a 70-deg full field of view, working distance from 3 mm to infinity, and 40% contrast at the Nyquist cutoff of the fiber bundle. Measured performance characteristics are near design goals. The endoscope was utilized to obtain example monochromatic, pseudo-white-light, and composite fluorescence images of phantoms and porcine reproductive tract. This work shows the feasibility of packaging a highly capable multispectral fluorescence imaging system into a miniature endoscopic system that may have applications in early detection of cancer.


Assuntos
Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Endoscópios , Desenho de Equipamento , Animais , Feminino , Fluorescência , Lasers , Iluminação , Neoplasias/diagnóstico por imagem , Suínos
6.
Biomed Opt Express ; 8(1): 124-136, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28101406

RESUMO

Early detection of ovarian cancer is only achieved in around 20% of women due to lack of effective screening. We propose a method for surveillance of high risk women based on a microendoscope introduced transvaginally to image the fallopian tubes and ovaries. This requires extreme miniaturization of the optics and catheter sheath. We describe the design of a falloposcope that combines optical coherence tomography (OCT) and wide field imaging into a sub-1 mm diameter package. We characterize the systems and show that they provide contrast on ex-vivo samples of ovary and fallopian tube. In addition, we show the mechanical performance of the endoscope in an anatomically correct model of the female reproductive tract.

7.
Anal Chem ; 88(17): 8902-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529634

RESUMO

Cancer is a leading cause of death worldwide and metastases are responsible for over 90% of human cancer deaths. There is an urgent need to develop novel therapeutics for suppressing cancer invasion, the initial step of metastasis. Nevertheless, the regulation of cancer invasion is poorly understood due to a paucity of tools for monitoring the invasion process in 3D microenvironments. Here, we report a double-stranded locked nucleic acid (dsLNA) biosensor for investigating 3D collective cancer invasion. By incorporating multiphoton microscopy and the dsLNA biosensor, we perform dynamic single cell gene expression analysis while simultaneously characterizing the biomechanical interaction between the invading sprouts and the extracellular matrix. Gene profiling of invasive leader cells and detached cells suggest distinctive signaling mechanisms involved in collective and individual invasion in the 3D microenvironment. Our results underscore the involvement of Notch signaling in 3D collective cancer invasion, which warrants further investigation toward antimetastasis therapy in the future.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico por imagem , Corantes Fluorescentes/química , Oligonucleotídeos/química , Feminino , Corantes Fluorescentes/síntese química , Humanos , Oligonucleotídeos/síntese química , Imagem Óptica , Análise de Célula Única , Células Tumorais Cultivadas
8.
J Biomed Opt ; 21(5): 56005, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220626

RESUMO

With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.


Assuntos
Detecção Precoce de Câncer/métodos , Tubas Uterinas/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem , Feminino , Fluorescência , Humanos
9.
Microsc Microanal ; 22(2): 349-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26903264

RESUMO

Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Metaloproteases/análise , Microscopia de Fluorescência/métodos , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Camundongos
10.
J Biomed Opt ; 20(9): 096015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397238

RESUMO

Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Tomografia de Coerência Óptica/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
11.
Angiogenesis ; 18(3): 219-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25795217

RESUMO

During angiogenesis, growing neovessels must effectively navigate through the tissue space as they elongate and subsequently integrate into a microvascular network. While time series microscopy has provided insight into the cell activities within single growing neovessel sprouts, less is known concerning neovascular dynamics within a large angiogenic tissue bed. Here, we developed a time-lapse imaging technique that allowed visualization and quantification of sprouting neovessels as they form and grow away from adult parent microvessels in three dimensions over cubic millimeters of matrix volume during the course of up to 5 days on the microscope. Using a new image acquisition procedure and novel morphometric analysis tools, we quantified the elongation dynamics of growing neovessels and found an episodic growth pattern accompanied by fluctuations in neovessel diameter. Average elongation rate was 5 µm/h for individual vessels, but we also observed considerable dynamic variability in growth character including retraction and complete regression of entire neovessels. We observed neovessel-to-neovessel directed growth over tens to hundreds of microns preceding tip-to-tip inosculation. As we have previously described via static 3D imaging at discrete time points, we identified different collagen fibril structures associated with the growing neovessel tip and stalk, and observed the coordinated alignment of growing neovessels in a deforming matrix. Overall analysis of the entire image volumes demonstrated that although individual neovessels exhibited episodic growth and regression, there was a monotonic increase in parameters associated with the entire vascular bed such as total network length and number of branch points. This new time-lapse imaging approach corroborated morphometric changes in individual neovessels described by us and others, as well as captured dynamic neovessel behaviors unique to days-long angiogenesis within the forming neovascular network.


Assuntos
Microvasos/crescimento & desenvolvimento , Neovascularização Fisiológica , Animais , Anisotropia , Técnicas de Cultura de Células , Colágeno/química , Epididimo , Matriz Extracelular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Microscopia , Morfogênese , Ratos , Análise de Regressão , Fatores de Tempo , Imagem com Lapso de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Biomed Opt ; 19(8): 086003, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25104409

RESUMO

We successfully labeled colorectal cancer in vivo using quantum dots targeted to vascular endothelial growth factor receptor 2 (VEGFR2). Quantum dots with emission centered at 655 nm were bioconjugated to anti-VEGFR2 antibodies through streptavidin/biotin linking. The resulting QD655-VEGFR2 contrast agent was applied in vivo to the colon of azoxymethane (AOM) treated mice via lavage and allowed to incubate. The colons were then excised, cut longitudinally, opened to expose the lumen, and imaged en face using a fluorescence stereoscope. The QD655-VEGFR2 contrast agent produced a significant increase in contrast between diseased and undiseased tissues, allowing for fluorescence-based visualization of the diseased areas of the colon. Specificity was assessed by observing insignificant contrast increase when labeling colons of AOM-treated mice with quantum dots bioconjugated to isotype control antibodies, and by labeling the colons of saline-treated control mice. This contrast agent has a great potential for in vivo imaging of the colon through endoscopy.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Aumento da Imagem/métodos , Microscopia de Fluorescência/métodos , Pontos Quânticos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Células HT29 , Humanos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829083

RESUMO

Idiopathic onset of unilateral vocal fold paralysis (UVP) is caused by damage to the recurrent laryngeal nerve (RLN) and results in difficulty speaking, breathing, and swallowing. This damage may occur in this nerve as it loops around the aortic arch, which is in a dynamic biomechanical environment. The goal of this study is to determine if the location-dependent biomechanical and microstructural properties of the RLN are different in piglets versus adolescent pigs. The neck/distal and thoracic/proximal (near the aortic arch) regions of the RLN from eight adolescent pigs and six piglets were isolated and mechanically assessed in uni-axial tension. Two-photon imaging (second harmonic) data were collected at 5%, 10%, and 15% strain during the mechanical test. The tangential modulus (TM) and the strain energy density (W) were determined at each level of strain. The mean mode of the preferred fiber angle and the full width at half maximum (FWHM, a measure of fiber splay) were calculated from the imaging data. We found significantly larger values of TM, W, and FWHM in the proximal segments of the left RLN when compared to the distal segments (18.51 MPa ± 1.22 versus 10.78 MPa ± 1.22, p < 0.001 for TM, 0.046 MPa ± 0.01 versus 0.026 MPa ± 0.01, p < 0.003 for W, 15.52 deg ± 1.00 versus 12.98 deg ± 1.00, p < 0.001 for FWHM). TM and W were larger in the left segments than the right (15.32 MPa ± 1.20 versus 11.80 MPa ± 1.20, p < 0.002 for TM, 0.038 MPa ± 0.01 versus 0.028 MPa ± 0.01, p < 0.0001 for W). W was larger in piglets when compared to adolescent pigs (0.042 MPa ± 0.01 versus 0.025 MPa ± 0.01, p < 0.04). The proximal region of the left porcine RLN is more stiff than the distal region and has a higher degree of fiber splay. The left RLN of the adolescent pigs also displayed a higher degree of strain stiffening than the right. These differences may develop as a result of the more dynamic environment the left RLN is in as it loops around the aortic arch.


Assuntos
Envelhecimento , Fenômenos Mecânicos , Pescoço/inervação , Nervo Laríngeo Recorrente/fisiologia , Tórax/inervação , Animais , Fenômenos Biomecânicos , Nervo Laríngeo Recorrente/fisiopatologia , Estresse Mecânico , Suínos , Paralisia das Pregas Vocais/fisiopatologia
14.
J Biomech Eng ; 136(2): 021001, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24441831

RESUMO

Angiogenesis is the process by which new blood vessels sprout from existing blood vessels, enabling new vascular elements to be added to an existing vasculature. This review discusses our investigations into the role of cell-matrix mechanics in the mechanical regulation of angiogenesis. The experimental aspects of the research are based on in vitro experiments using an organ culture model of sprouting angiogenesis with the goal of developing new treatments and techniques to either promote or inhibit angiogenic outgrowth, depending on the application. Computational simulations were performed to simulate angiogenic growth coupled to matrix deformation, and live two-photon microscopy was used to obtain insight into the dynamic mechanical interaction between angiogenic neovessels and the extracellular matrix. In these studies, we characterized how angiogenic neovessels remodel the extracellular matrix (ECM) and how properties of the matrix such as density and boundary conditions influence vascular growth and alignment. Angiogenic neovessels extensively deform and remodel the matrix through a combination of applied traction, proteolytic activity, and generation of new cell-matrix adhesions. The angiogenic phenotype within endothelial cells is promoted by ECM deformation and remodeling. Sensitivity analysis using our finite element model of angiogenesis suggests that cell-generated traction during growth is the most important parameter controlling the deformation of the matrix and, therefore, angiogenic growth and remodeling. Live two-photon imaging has also revealed numerous neovessel behaviors during angiogenesis that are poorly understood such as episodic growth/regression, neovessel colocation, and anastomosis. Our research demonstrates that the topology of a resulting vascular network can be manipulated directly by modifying the mechanical interaction between angiogenic neovessels and the matrix.


Assuntos
Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Microcirculação/fisiologia , Microvasos/crescimento & desenvolvimento , Modelos Cardiovasculares , Neovascularização Fisiológica/fisiologia , Animais , Módulo de Elasticidade/fisiologia , Humanos
15.
Microcirculation ; 21(4): 278-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24447042

RESUMO

In the adult, angiogenesis leads to an expanded microvascular network as new vessel segments are added to an existing microcirculation. Necessarily, growing neovessels must navigate through tissue stroma as they locate and grow toward other vessel elements. We have a growing body of evidence demonstrating that angiogenic neovessels reciprocally interact with the interstitial matrix of the stroma resulting in directed neovascular growth during angiogenesis. Given the compliance and the viscoelastic properties of collagen, neovessel guidance by the stroma is likely due to compressive strain transverse to the direction of primary tensile forces present during active tissue deformation. Similar stromal strains control the final network topology of the new microcirculation, including the distribution of arterioles, capillaries, and venules. In this case, stromal-derived stimuli must be present during the post-angiogenesis remodeling and maturation phases of neovascularization to have this effect. Interestingly, the preexisting organization of vessels prior to the start of angiogenesis has no lasting influence on the final, new network architecture. Combined, the evidence describes interplay between angiogenic neovessels and stroma that is important in directed neovessel growth and invasion. This dynamic is also likely a mechanism by which global tissue forces influence vascular form and function.


Assuntos
Microcirculação/fisiologia , Microvasos/crescimento & desenvolvimento , Neovascularização Fisiológica/fisiologia , Adulto , Animais , Humanos , Microvasos/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
16.
Cancer Biol Ther ; 15(1): 42-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145178

RESUMO

Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer.


Assuntos
Carcinogênese/patologia , Neoplasias Ovarianas/patologia , Ovário/patologia , Animais , Feminino , Tumor de Células da Granulosa/patologia , Hiperplasia/patologia , Camundongos , Imagem Multimodal , Imagem com Lapso de Tempo , Tomografia de Coerência Óptica
17.
Lasers Surg Med ; 45(9): 573-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24114774

RESUMO

BACKGROUND AND OBJECTIVES: Colonoscopy is the preferred method for colon cancer screening, but can miss polyps and flat neoplasms with low color contrast. The objective was to develop a new autofluorescence method that improves image contrast of colonic neoplasms. STUDY DESIGN/MATERIALS AND METHODS: We selected the three strongest native fluorescence signals and developed a novel method where fluorescence images are processed in a ratiometric formula to represent the likely cellular and structural changes associated with neoplasia. Native fluorescence images of fresh surgical specimens of the colon containing normal mucosa, polypoid and flat adenomas as well as adenocarcinoma were recorded using a prototype multi-spectral imager. Sixteen patients, with a mean age of 62 years (range 28-81) undergoing elective resection for colonic neoplasms were enrolled. High contrast images were seen with fluorescence from tryptophan (Tryp), flavin adenine dinucleotide (FAD) and collagen. RESULTS: When the image intensity of Tryp was divided pixel by pixel, by the intensities of FAD and collagen, the resulting formulaic ratio (FR) images were of exceptionally high contrast. The FR images of adenomas and adenocarcinomas had increased Weber contrast. CONCLUSIONS: FR imaging is a novel imaging process that represents the likely metabolic and structural changes in colonic neoplasia that produces images with remarkably high contrast.


Assuntos
Adenocarcinoma/diagnóstico , Adenoma/diagnóstico , Neoplasias do Colo/diagnóstico , Colonoscopia/métodos , Imagem Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Colonoscopia/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Óptica/instrumentação
18.
Biomatter ; 3(3)2013.
Artigo em Inglês | MEDLINE | ID: mdl-23628871

RESUMO

AAA is a complex disease that leads to a localized dilation of the infrarenal aorta that develops over years. Longitudinal information in humans has been difficult to obtain for this disease, therefore mouse models have become increasingly used to study the development of AAAs. The objective of this study was to determine any changes that occur in the biomechanical response and fiber microstructure in the ApoE(-/-) AngII mouse model of aneurysm during disease progression. Adult ApoE(-/-) AngII infused mice along with wild-type controls were taken at 14 and 28 d. Aortas were excised and tested simultaneously for biaxial mechanical response and ECM organization. Data sets were fit to a Fung-type constitutive model to give peak strains and stiffness values. Images from two photon microscopy were quantified in order to assess the preferred fiber alignment and degree of fiber orientation. Biomechanical results found significant differences that were present at 14 d had returned to normal by 28 d along with significant changes in fiber orientation and dispersion indicating remodeling occurring within the aneurysmal wall. This return of some of the normal biomechanical function, in addition the continuing changes that occur in the microstructure suggest a restorative response that occurs in the ApoE(-/-) AngII infused model after the initial aneurysm formation.


Assuntos
Angiotensina II/metabolismo , Aorta/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Apolipoproteínas E/genética , Modelos Animais de Doenças , Angiotensina II/genética , Animais , Aorta/ultraestrutura , Apolipoproteínas E/metabolismo , Fenômenos Biomecânicos , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica
19.
Microsc Microanal ; 19(1): 201-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23380006

RESUMO

We report our efforts in identifying optimal scanning laser microscope parameters to study cells in three-dimensional culture. For this purpose we studied contrast of extracellular matrix (ECM) mimics, as well as signal attenuation, and bleaching of red and green fluorescent protein labeled cells. Confocal backscattering, second harmonic generation (SHG), and autofluorescence were sources of contrast in ECM mimics. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence. We labeled breast cancer cells' outline with DsRed2 and nucleus with enhanced green fluorescent protein (eGFP). We observed significant difference both for the bleaching rates of eGFP and DsRed2 where bleaching is strongest during two-photon excitation (TPE) and smallest during confocal imaging. But for eGFP the bleaching rate difference is smaller than for DsRed2. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence of DsRed2 becomes twice as strong compared to confocal imaging. In fibrin and agarose gels, the imaging depth will need to be beyond 1 mm to notice a TPE advantage.


Assuntos
Células/química , Matriz Extracelular/química , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Linhagem Celular Tumoral , Humanos , Proteínas Luminescentes/análise , Coloração e Rotulagem/métodos
20.
J Biomed Opt ; 18(1): 16005, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23291657

RESUMO

The accepted screening technique for colon cancer is white light endoscopy. While most abnormal growths (lesions) are detected by this method, a significant number are missed during colonoscopy, potentially resulting in advanced disease. Missed lesions are often flat and inconspicuous in color. A prototype ultraviolet spectral imager measuring autofluorescence (AF) and reflectance has been developed and applied in a study of 21 fresh human colon surgical specimens. Six excitation wavelengths from 280 to 440 nm and formulaic ratio imaging were utilized to increase lesion contrast and cause neoplasms to appear bright compared to normal tissue. It was found that in the subset of lesions which were most difficult to visualize in standard color photographs [low contrast lesions, (LCLs)] a ratio image (F340/F440) of AF images excited at 340 and 440 nm produced extraordinary images and was effective in about 70% of these difficult cases. Contrast may be due to increased levels of reduced nicotinamide adenine dinucleotide, increased hemoglobin absorption, and reduced signal from submucosal collagen. A second successful ratio image (R480/R555) combined two reflectance images to produce exceptional images especially in particular LCLs where F340/F440 was ineffective. The newly discovered ratio images can potentially improve detection rate in screening with a novel AF colonoscope.


Assuntos
Neoplasias do Colo/patologia , Colonoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Adenocarcinoma/patologia , Adenoma/patologia , Neoplasias do Colo/diagnóstico , Simulação por Computador , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA