RESUMO
Motile cilia on the cell surface produce fluid flows in the body and abnormalities in motile cilia cause primary ciliary dyskinesia. Dynein axonemal assembly factor 6 (DNAAF6), a causative gene of primary ciliary dyskinesia, was isolated as an interacting protein with La ribonucleoprotein 6 (LARP6) that regulates ciliogenesis in multiciliated cells (MCCs). In MCCs of Xenopus embryos, LARP6 and DNAAF6 were colocalized in biomolecular condensates termed dynein axonemal particles and synergized to control ciliogenesis. Moreover, tubulin alpha 1c-like mRNA encoding α-tubulin protein, that is a major component of ciliary axoneme, was identified as a target mRNA regulated by binding LARP6. While DNAAF6 was necessary for high α-tubulin protein expression near the apical side of Xenopus MCCs during ciliogenesis, its mutant, which abolishes binding with LARP6, was unable to restore the expression of α-tubulin protein near the apical side of MCCs in Xenopus DNAAF6 morphant. These results indicated that the binding of LARP6 and DNAAF6 in dynein axonemal particles regulates highly expressed α-tubulin protein near the apical side of Xenopus MCCs during ciliogenesis.
Assuntos
Cílios , Ribonucleoproteínas , Tubulina (Proteína) , Proteínas de Xenopus , Xenopus laevis , Cílios/metabolismo , Animais , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Humanos , Antígeno SS-B , Autoantígenos/metabolismo , Autoantígenos/genética , Ligação Proteica , Axonema/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genéticaRESUMO
BACKGROUND: This study reports the use of real-time PCR to identify the SNP rs1545397 in the intron region on the OCA2 gene from ancient and degraded DNA isolated from ancient human bones from Mongolia, Korea, and Uzbekistan. This SNP is a marker for skin pigmentation. LightCycler-based probes (HybProbes) were designed. A LightCycler (version 2.0) system was used for the real-time PCR. RESULTS: The results of the real-time PCRs of three different genotypes of SNP rs1545397 were compared with those of the direct sequencing. Melting curve analysis was used for genotype determination. Three genotypes were distinguished: the homozygous T (T/T) SNP type formed a distinct melting peak at 53.3 ± 0.14°C, the homozygous A (A/A) SNP type formed a distinct melting peak at 57.8 ± 0.12°C, and the heterozygous A/T SNP type formed two distinct melting peaks at 53.3 ± 0.17°C and 57.8 ± 0.15°C. Mongolian aDNA samples tested in this study carried all three types of the SNP (A/T, A/A, and T/T) with no distinctly predominant type observed. In contrast, Korean aDNA samples carried the Asian genotype (T/T), while the Uzbekistan aDNA samples carried the European genotype (A/A) more often than the Asian genotype (T/T). CONCLUSIONS: Human Mongolian aDNA samples had A/T, A/A, and T/T SNP rs1545397 with no distinct predominant genotype. When combined with the archeological and aDNA studies of other coupling morphologies with aDNA, our results infer that Mongolia's prehistoric population had considerable heterogeneity of skin color and morphological traits and that in the Neolithic period, a Eurasian or mixed population inhabited the western part of Mongolia.
Assuntos
Povo Asiático/genética , DNA Antigo/análise , Pigmentação da Pele/genética , Genótipo , Humanos , Mongólia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , República da Coreia , UzbequistãoRESUMO
PURPOSE: Neutrophils are considered key effector cells in the pathogenic mechanisms of airway inflammation in asthma. This study assessed the activation status of neutrophils in adult asthmatics, and the therapeutic potential of FTY720, a synthetic sphingosine-1-phosphate analog, on activated neutrophils using an in vitro stimulation model. METHODS: We isolated peripheral blood neutrophils (PBNs) from 59 asthmatic patients (including 20 aspirin-exacerbated respiratory disease [AERD] and 39 aspirin-tolerant asthma [ATA] groups). PBNs were stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharide (LPS) and their activation status was determined based on reactive oxygen species (ROS) production, cell surface expression of CD11b, interleukin (IL)-8 and matrix metallopeptidase (MMP)-9 release. PBNs were primed with FTY720 to evaluate its anti-inflammatory action. RESULTS: In vitro PBN stimulation with fMLP or LPS induced a significant increase in ROS/CD11b/IL-8/MMP-9 levels (P < 0.05 for all). In asthmatics, fMLP-induced ROS level was significantly correlated with values of forced expiratory volume in 1 second/forced vital capacity (r = -0.278; P = 0.036), maximal mid-expiratory flow (r = -0.309; P = 0.019) and PC20 methacholine (r = -0.302; P = 0.029). In addition, ROS levels were significantly higher in patients with AERD and in those with severe asthma than in those with ATA or non-severe asthma (P < 0.05 for all). FTY720 treatment could suppress ROS/CD11b levels, and LPS-induced IL-8 and MMP-9 levels (P < 0.05 for all). Responders to FTY720 treatment had significantly higher neutrophil counts in sputum (P = 0.004). CONCLUSIONS: Our findings suggest a useful in vitro PBN stimulation model for evaluating the neutrophil functional status and the therapeutic potentials of neutrophil-targeting candidates in asthmatics.
RESUMO
The ATP-binding cassette subfamily C member 4 gene encodes a transmembrane protein involved in the export of proinflammatory molecules, including leukotriene, prostaglandin, and sphingosine-1-phosphate across the plasma membrane. Those metabolites play important roles in asthma. We investigated the potential associations between ABCC4 gene polymorphisms and asthma phenotype. In total, 270 asthma patients and 120 normal healthy controls were enrolled for a genetic association study. Two polymorphisms (-1508A>G and -642C>G) in the ABCC4 promoter were genotyped. The functional variability of the promoter polymorphisms was analyzed by luciferase reporter assay. Inflammatory cytokine levels were measured by enzyme-linked immunosorbent assay. Serum and urinary eicosanoid metabolites, sphingosine-1-phosphate, were evaluated by quadrupole time-of-flight mass spectrometry. Asthma patients carrying the G allele at -1508A>G had significantly higher serum levels of periostin, myeloperoxidase, and urinary levels of 15-hydroxyeicosatetraenoic acid and sphingosine-1-phosphate (P = 0.016, P = 0.027, P = 0.032, and P = 0.010, resp.) compared with noncarrier asthma patients. Luciferase activity was significantly enhanced in human epithelial A549 cells harboring a construct containing the -1508G allele (P < 0.01 for each) compared with a construct containing the -1508A allele. A functional polymorphism in the ABCC4 promoter, -1508A>G, may increase extracellular 15-hydroxyeicosatetraenoic acid, sphingosine-1-phosphate, and periostin levels, contributing to airway inflammation in asthmatics.