Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Res Toxicol ; 35(12): 2310-2323, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36473170

RESUMO

Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female Cyp2a(4/5)bgs-null, Cyp2f2-null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 µM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one para-chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a para-chlorine group. These findings suggest that Cyp2a(4/5)bgs-null and Cyp2f2-null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of Cyp2a(4/5)bgs or Cyp2f2) affects the toxicity of chiral PCB congeners.


Assuntos
Bifenilos Policlorados , Masculino , Feminino , Camundongos , Animais , Bifenilos Policlorados/metabolismo , Microssomos Hepáticos/metabolismo , Família 2 do Citocromo P450/metabolismo , Camundongos Transgênicos , Cloro/metabolismo , Hidroxilação , Camundongos Knockout
2.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L308-L328, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853015

RESUMO

The translational value of high-throughput toxicity testing will depend on pharmacokinetic validation. Yet, popular in vitro airway epithelia models were optimized for structure and mucociliary function without considering the bioactivation or detoxification capabilities of lung-specific enzymes. This study evaluated xenobiotic metabolism maintenance within differentiated air-liquid interface (ALI) airway epithelial cell cultures (human bronchial; human, rhesus, and mouse tracheal), isolated airway epithelial cells (human, rhesus, and mouse tracheal; rhesus bronchial), and ex vivo microdissected airways (rhesus and mouse) by measuring gene expression, glutathione content, and naphthalene metabolism. Glutathione levels and detoxification gene transcripts were measured after 1-h exposure to 80 µM naphthalene (a bioactivated toxicant) or reactive naphthoquinone metabolites. Glutathione and glutathione-related enzyme transcript levels were maintained in ALI cultures from all species relative to source tissues, while cytochrome P450 monooxygenase gene expression declined. Notable species differences among the models included a 40-fold lower total glutathione content for mouse ALI trachea cells relative to human and rhesus; a higher rate of naphthalene metabolism in mouse ALI cultures for naphthalene-glutathione formation (100-fold over rhesus) and naphthalene-dihydrodiol production (10-fold over human); and opposite effects of 1,2-naphthoquinone exposure in some models-glutathione was depleted in rhesus tissue but rose in mouse ALI samples. The responses of an immortalized bronchial cell line to naphthalene and naphthoquinones were inconsistent with those of human ALI cultures. These findings of preserved species differences and the altered balance of phase I and phase II xenobiotic metabolism among the characterized in vitro models should be considered for future pulmonary toxicity testing.


Assuntos
Brônquios , Xenobióticos , Animais , Brônquios/metabolismo , Glutationa/metabolismo , Humanos , Macaca mulatta/metabolismo , Camundongos , Naftalenos/toxicidade , Especificidade da Espécie , Xenobióticos/farmacologia
3.
Toxicol Sci ; 171(2): 406-420, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268529

RESUMO

Polychlorinated biphenyls (PCBs) have been associated with neurodevelopmental disorders. Several neurotoxic congeners display axial chirality and atropselectively affect cellular targets implicated in PCB neurotoxicity. Only limited information is available regarding the atropselective metabolism of these congeners in humans and their atropselective effects on neurotoxic outcomes. Here we investigate the hypothesis that the oxidation of 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) by human liver microsomes (HLMs) and their effects on dopaminergic cells in culture are atropselective. Racemic PCB 132 was incubated with pooled or single donor HLMs, and levels and enantiomeric fractions of PCB 132 and its metabolites were determined gas chromatographically. The major metabolite was either 2,2',3,4,4',6'-hexachlorobiphenyl-3'-ol (3'-140), a 1,2-shift product, or 2,2',3,3',4,6'-hexachlorobiphenyl-5'-ol (5'-132). The PCB 132 metabolite profiles displayed interindividual differences and depended on the PCB 132 atropisomer. Computational studies suggested that 3'-140 is formed via a 3,4-arene oxide intermediate. The second eluting atropisomer of PCB 132, first eluting atropisomer of 3'-140, and second eluting atropisomer of 5'-132 were enriched in all HLM incubations. Enantiomeric fractions of the PCB 132 metabolites differed only slightly between the single donor HLM preparations investigated. Reactive oxygen species and levels of dopamine and its metabolites were not significantly altered after a 24 h exposure of dopaminergic cells to pure PCB 132 atropisomers. These findings suggest that there are interindividual differences in the atropselective biotransformation of PCB 132 to its metabolites in humans; however, the resulting atropisomeric enrichment of PCB 132 is unlikely to affect neurotoxic outcomes associated with the endpoints investigated in the study.

4.
Environ Sci Technol ; 53(4): 2114-2123, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30576102

RESUMO

Exposure to chiral polychlorinated biphenyls (PCBs) has been associated with neurodevelopmental disorders. Their hydroxylated metabolites (OH-PCBs) are also potentially toxic to the developing human brain; however, the formation of OH-PCBs by human cytochrome P450 (P450) isoforms is poorly investigated. To address this knowledge gap, we investigated the atropselective biotransformation of 2,2',3,4',6-pentachlorobiphenyl (PCB 91), 2,2',3,5',6-pentachlorobiphenyl (PCB 95), 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132), and 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) by different human P450 isoforms. In silico predictions with ADMET Predictor and MetaDrug software suggested a role of CYP1A2, CYP2A6, CYP2B6, CYP2E1, and CYP3A4 in the metabolism of chiral PCBs. Metabolism studies with recombinant human enzymes demonstrated that CYP2A6 and CYP2B6 oxidized PCB 91 and PCB 132 in the meta position and that CYP2A6 oxidized PCB 95 and PCB 136 in the para position. CYP2B6 played only a minor role in the metabolism of PCB 95 and PCB 136 and formed meta-hydroxylated metabolites. Traces of para-hydroxylated PCB metabolites were detected in incubations with CYP2E1. No hydroxylated metabolites were present in incubations with CYP1A2 or CYP3A4. Atropselective analysis revealed P450 isoform-dependent and congener-specific atropselective enrichment of OH-PCB metabolites. These findings suggest that CYP2A6 and CYP2B6 play an important role in the oxidation of neurotoxic PCBs to chiral OH-PCBs in humans.


Assuntos
Bifenilos Policlorados , Citocromo P-450 CYP2A6 , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2E1 , Humanos , Hidroxilação , Estereoisomerismo
5.
Environ Sci Technol ; 52(10): 6000-6008, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659268

RESUMO

Polychlorinated biphenlys (PCBs) and their hydroxylated metabolites (OH-PCBs) have been implicated in neurodevelopmental disorders. Several neurotoxic PCBs, such as PCB 91, are chiral because they form stable rotational isomers, or atropisomers, that are nonsuperimposable mirror images of each other. Because only limited information about the metabolism of these PCBs by human cytochrome P450 (P450) enzymes is available, we investigated the biotransformation of PCB 91 to OH-PCBs by human liver microsomes (HLMs). Racemic PCB 91 was incubated with pooled or individual donor HLMs at 37 °C, and levels and chiral signatures of PCB 91 and its metabolites were determined. Several OH-PCBs were formed in the order 2,2',4,4',6-pentachlorobiphenyl-3-ol (3-100; 1,2 shift product) > 2,2',3,4',6-pentachlorobiphenyl-5-ol (5-91) ≫ 2,2',3,4',6-pentachlorobiphenyl-4-ol (4-91) ≫ 4,5-dihydroxy-2,2',3,4',6-pentachlorobiphenyl (4,5-91). Metabolite formation rates displayed interindividual variability. The first eluting atropisomers of PCB 91, 3-100 and 4-91, and the second eluting atropisomer of 5-91 were enriched in most metabolism studies. The unexpected, preferential formation of a 1,2-shift product and the variability of the OH-PCBs profiles in experiments with individual donor HLMs underline the need for further systematic studies of the atropselective metabolism of PCBs in humans.


Assuntos
Microssomos Hepáticos , Bifenilos Policlorados , Sistema Enzimático do Citocromo P-450 , Humanos , Hidroxilação , Estereoisomerismo
6.
Environ Sci Technol ; 51(3): 1820-1829, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28038482

RESUMO

Polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substituents and their metabolites exist as stable rotational isomers, or atropisomers, that are nonsuperimposable mirror images of each other. Additionally, the oxidation of certain axially prochiral PCBs, such as 2,2',4,6'-tetrachlorobiphenyl (PCB 51) and 2,2',4,5,6'-pentachlorobiphenyl (PCB 102), in the meta position of the symmetrically substituted phenyl ring is expected to form axially chiral hydroxylated metabolites (OH-PCBs); however, the formation of chiral OH-PCBs from prochiral PCBs has not been demonstrated experimentally. Here, we investigate if the oxidation of PCB 51 and PCB 102 by different microsomal preparations results in the formation of chiral OH-PCBs. Gas chromatographic analysis revealed that PCB 51 and PCB 102 were metabolized to 2,2',4,6'-tetrachlorobiphenyl-3'-ol (OH-PCB 51) and 2,2',4,5,6'-pentachlorobiphenyl-3'-ol (OH-PCB 102), respectively, by liver microsomes from male rats pretreated with different inducers; untreated male monkeys, guinea pigs, rabbits, and hamsters; and female dogs. The formation of both metabolites was inducer- and species-dependent. Both OH-PCB 51 and OH-PCB 102 were chiral and formed enantioselectively by all microsomal preparations investigated. These findings demonstrate that axially chiral PCB metabolites are formed from axially prochiral PCB congeners, a fact that should be considered when studying the environmental fate, transport, and toxicity of OH-PCBs.


Assuntos
Microssomos Hepáticos/metabolismo , Bifenilos Policlorados/metabolismo , Animais , Cobaias , Hidroxilação , Masculino , Oxirredução , Bifenilos Policlorados/química , Ratos , Estereoisomerismo
7.
Chem Res Toxicol ; 29(12): 2108-2110, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989147

RESUMO

Exposure to neurotoxic, chiral PCBs has been associated with neurodevelopmental disorders, but their metabolism in humans remains unexplored. We investigated the enantioselective metabolism of PCB 95 by human liver microsomes (HLMs) to potentially neurotoxic, hydroxylated metabolites (OH-PCBs). OH-PCB profiles formed in experiments with HLMs differed from metabolite profiles reported for rodent species. The second eluting atropisomer of 2,2',3,5',6-pentachlorobiphenyl-4'-ol, the major metabolite, was preferentially formed by all HLM preparations investigated. Differences in metabolite formation rates were observed with single donor HLMs. The metabolism of PCBs and its role in PCB-mediated neurodevelopmental disorders need to be further characterized.


Assuntos
Microssomos Hepáticos/metabolismo , Humanos , Hidroxilação , Bifenilos Policlorados/metabolismo
8.
Toxicology ; 338: 59-68, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26463278

RESUMO

Polychlorinated biphenyls (PCBs) are metabolized by cytochrome P450 2B enzymes (CYP2B) and nicotine is reported to alter CYP2B activity in the brain and liver. To test the hypothesis that nicotine influences PCB disposition, 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and its metabolites were quantified in tissues of adult male Wistar rats exposed to PCB 95 (6mg/kg/d, p.o.) in the absence or presence of nicotine (1.0mg/kg/d of the tartrate salt, s.c.) for 7 consecutive days. PCB 95 was enantioselectively metabolized to hydroxylated (OH-) PCB metabolites, resulting in a pronounced enrichment of E1-PCB 95 in all tissues investigated. OH-PCBs were detected in blood and liver tissue, but were below the detection limit in adipose, brain and muscle tissues. Co-exposure to nicotine did not change PCB 95 disposition. CYP2B1 mRNA and CYP2B protein were not detected in brain tissues but were detected in liver. Co-exposure to nicotine and PCB 95 increased hepatic CYP2B1 mRNA but did not change CYP2B protein levels relative to vehicle control animals. However, hepatic CYP2B protein in animals co-exposed to PCB 95 and nicotine were reduced compared to animals that received only nicotine. Quantification of CYP2B3, CYP3A2 and CYP1A2 mRNA identified significant effects of nicotine and PCB 95 co-exposure on hepatic CYP3A2 and hippocampal CYP1A2 transcripts. Our findings suggest that nicotine co-exposure does not significantly influence PCB 95 disposition in the rat. However, these studies suggest a novel influence of PCB 95 and nicotine co-exposure on hepatic cytochrome P450 (P450) expression that may warrant further attention due to the increasing use of e-cigarettes and related products.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Nicotina/administração & dosagem , Bifenilos Policlorados/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Citocromos/genética , Citocromos/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidroxilação , Fígado/enzimologia , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar , Especificidade por Substrato , Fatores de Tempo
9.
Chem Res Toxicol ; 27(8): 1411-20, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24988477

RESUMO

PCBs, such as PCB3, are air contaminants in buildings and outdoors. Metabolites of PCB3 are potential endocrine disrupting chemicals and genotoxic agents. We studied the disposition of phenolic and sulfated metabolites after acute nose-only inhalation exposure to airborne PCB3 for 2 h in female rats. Inhalation exposure was carried out in three groups. In the first group, rats exposed to an estimated dose of 26 µg/rat were euthanized at 0, 1, 2, and 4 h after exposure. Highest concentrations of phenols and sulfates were observed at 0 h, and the values were 7 ± 1 and 560 ± 60 ng/mL in serum, 213 ± 120 and 842 ± 80 ng/g in liver, 31 ± 27 and 22 ± 7 ng/g in lung, and 27 ± 6 and 3 ± 0 ng/g in brain, respectively. First-order serum clearance half-lives of 0.5 h for phenols and 1 h for sulfates were estimated. In the second group, rats exposed to an estimated dose of 35 µg/rat were transferred to metabolism cages immediately after exposure for the collection of urine and feces over 24 h. Approximately 45 ± 5% of the dose was recovered from urine and consisted mostly of sulfates; the 18 ± 5% of the dose recovered from feces was exclusively phenols. Unchanged PCB3 was detected in both urine and feces but accounted for only 5 ± 3% of the dose. Peak excretion of metabolites in both urine and feces occurred within 18 h postexposure. In the third group, three bile-cannulated rats exposed to an estimated dose of 277 µg/rat were used for bile collection. Bile was collected for 4 h immediately after 2 h exposure. Biliary metabolites consisted mostly of sulfates, some glucuronides, and lower amounts of the free phenols. Control rats in each group were exposed to clean air. Clinical serum chemistry values, serum T4 level, and urinary 8-hydroxy-2'-deoxyguanosine were similar in treated and control rats. These data show that PCB3 is rapidly metabolized to phenols and conjugated to sulfates after inhalation and that both of these metabolites are distributed to liver, lungs, and brain. The sulfates elaborated into bile are either reabsorbed or hydrolyzed in the intestine and excreted in the feces as phenols.


Assuntos
Compostos de Bifenilo/metabolismo , Poluentes Ambientais/metabolismo , Fenóis/química , Sulfatos/química , 8-Hidroxi-2'-Desoxiguanosina , Animais , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Poluentes Ambientais/química , Fezes/química , Feminino , Meia-Vida , Exposição por Inalação , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Tiroxina/sangue , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA