Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186903, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977608

RESUMO

We study THz-driven condensate dynamics in epitaxial thin films of MgB_{2}, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the THz-driven suppression of condensate density reveals an unexpected decrease in pair-breaking efficiency with increasing temperature-unlike in the case of optical excitation. The reduced pair-breaking efficiency of narrow-band THz pulses, displaying minimum near ≈0.7 T_{c}, is attributed to THz-driven, long-lived, nonthermal quasiparticle distribution, resulting in Eliashberg-type enhancement of superconductivity, competing with pair breaking.

2.
Nat Commun ; 14(1): 7493, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980430

RESUMO

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm-2.

3.
Rev Sci Instrum ; 94(2): 023905, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859038

RESUMO

We present the modifications, performance, and test of a diamond anvil cell for radio frequency dielectric spectroscopy studies of single crystals that can be used from room temperature down to 4 K and up to pressures of 5-6 GPa. Continuous frequency-dependent measurements between 5 Hz and 1 MHz can be performed with this modified pressure cell. The cell has an excellent performance with temperature-, frequency-, and pressure-independent stray capacitance of around 2 pF, enabling us to use relatively small samples with a weak dielectric response.

4.
ACS Appl Mater Interfaces ; 13(31): 37331-37338, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319689

RESUMO

Chalcogenides with diamond-like (DL) structures are a treasury of infrared nonlinear optical (NLO) materials. Here, a ternary Hg-based chalcogenide with a defect DL structure, Hg3P2S8, is synthesized by solid-state reaction. Driven by the highly distorted [HgS4] tetrahedra, this compound displays an interesting structural symmetry degradation from tetragonal to orthorhombic compared with its analogue Zn3P2S8. Meanwhile, the overall performances of Hg3P2S8 are quite remarkable, including a very strong phase-matchable second-harmonic generation (SHG) response (4.2 × AgGaS2), large band gap (2.77 eV), wide IR transparent range (0.45-16.7 µm), and high laser-induced damage threshold (4 × AGS). Furthermore, the theoretical analysis and local dipole moment calculations elucidate that the highly distorted [HgS4] tetrahedra contribute a lot to the enhancement of the SHG effect. This discovery will motivate the exploration of other DL Hg-based chalcogenides serving as high-performing mid-IR NLO materials.

5.
Sci Rep ; 10(1): 11320, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647228

RESUMO

The most common species in liquid water, next to neutral [Formula: see text] molecules, are the [Formula: see text] and [Formula: see text] ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] ions in the IR spectra of light ([Formula: see text]), heavy ([Formula: see text]), and semi-heavy (HDO) water. We find that short-living ions, with concentrations reaching [Formula: see text] of the content of water molecules, coexist with long-living pH-active ions on the picosecond timescale, thus making liquid water an effective ionic liquid in femtochemistry.

6.
Phys Rev Lett ; 124(13): 136402, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302162

RESUMO

Employing high-pressure infrared spectroscopy we unveil the Weyl semimetal phase of elemental Te and its topological properties. The linear frequency dependence of the optical conductivity provides clear evidence for metallization of trigonal tellurium (Te-I) and the linear band dispersion above 3.0 GPa. This semimetallic Weyl phase can be tuned by increasing pressure further: a kink separates two linear regimes in the optical conductivity (at 3.7 GPa), a signature proposed for Type-II Weyl semimetals with tilted cones; this however reveals a different origin in trigonal tellurium. Our density-functional calculations do not reveal any significant tilting and suggest that Te-I remains in the Type-I Weyl phase, but with two valence bands in the vicinity of the Fermi level. Their interplay gives rise to the peculiar optical conductivity behavior with more than one linear regime. Pressure above 4.3 GPa stabilizes the more complex Te-II and Te-III polymorphs, which are robust metals.

7.
Phys Rev Lett ; 112(12): 127003, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724674

RESUMO

The superconductivity precursor phenomena in high temperature cuprate superconductors is studied by direct measurements of the superconducting condensate with the use of the c-axis optical conductivity of YBa2(Cu1-xZnx)3Oy for several doping levels (p) as well as for several Zn concentrations. Both the real and imaginary parts of the optical conductivity clearly show that the superconducting carriers persist up to the high temperatures Tp that is higher than the critical temperature Tc but lower than the pseudogap temperature T*. Tp increases with reducing doping level like T*, but decreases with Zn substitution unlike T*.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA