Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Metabolites ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755281

RESUMO

Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.

2.
Environ Pollut ; 330: 121818, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182577

RESUMO

Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis. This study investigated the effects of seven BP analogues and their equimolar cocktail on human granulosa cells (hGC) and assessed BPA, BPS, BPF and BPAF level exposures in the follicular fluid of 277 women undergoing Assisted Reproductive Technology. The hGCs were recovered after women oocyte punctures and treated with the seven BP analogues (BPS, BPA, BPAF, BPF, BPAP, BPE and BPB) or their equimolar cocktail of 7 × 1.43 or 7 × 7.14 µM for each of the seven BPs, the sum of BPs reaching 10 ("∑BPs 10 µM"), or 50 µM ("∑BPs 50 µM"), respectively. Oestradiol and progesterone secretion, cell proliferation, viability and expression of steroidogenic enzymes were investigated. Progesterone secretion was decreased by 6 BPs 10 µM and the cocktail "∑BPs 10 µM", (-17.8 to -41.3%) and by all seven BPs 50 µM and "∑BPs 50 µM" (-21.8 to -84.2%). Oestradiol secretion was decreased only by 50 µM BPAF and BPAP (-37.8% and -44%, respectively), with corresponding decreases in CYP17A1 and CYP19A1 gene expression. Cellular proliferation was decreased after treatment with 50 µM BPAF (-32.2%), BPAP (-29%), BPB (-24%) and the equimolar cocktail "∑BPs 50 µM" (-33.1%). BPB (50 µM) and the cocktail "∑BPs 50 µM" increased HSD3B2 mRNA expression. At least one BP was detected in 64 of 277 (23.1%) women follicular fluids. Similar effects of the seven BPs or their cocktail were observed on progesterone secretion and/or on cell proliferation, suggesting cumulative effects of BPs. Our results highlight the urge to consider all BPs simultaneously and to further investigate the potential additive or synergistic effects of several BPs.


Assuntos
Compostos Benzidrílicos , Progesterona , Humanos , Feminino , Masculino , Compostos Benzidrílicos/farmacologia , Células da Granulosa , Estradiol
3.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174735

RESUMO

Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.


Assuntos
Centrossomo , Oócitos , Humanos , Masculino , Bovinos , Animais , Camundongos , Ratos , Oócitos/ultraestrutura , Centrossomo/ultraestrutura , Centríolos/ultraestrutura , Espermatozoides/ultraestrutura , Mamíferos
4.
J Ovarian Res ; 16(1): 30, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737804

RESUMO

BACKGROUND: Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERß). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS: Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION: In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.


Assuntos
Células da Granulosa , Oócitos , Feminino , Ovinos , Animais , Humanos , Hormônios Esteroides Gonadais , Estradiol
5.
Toxics ; 10(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36006116

RESUMO

Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 µm, n = 168) with BPS (0.1 µM (possible human exposure dose) or 10 µM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.

6.
Front Endocrinol (Lausanne) ; 13: 892213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685208

RESUMO

Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/toxicidade , Estradiol , Feminino , Humanos , Oviductos/metabolismo , Fenóis , Progesterona/metabolismo , Ovinos , Sulfonas , Espectrometria de Massas em Tandem
7.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769186

RESUMO

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


Assuntos
Bovinos/metabolismo , Folículo Ovariano/metabolismo , Proteínas/metabolismo , Animais , Células Cultivadas , Células do Cúmulo/química , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/química , Células da Granulosa/metabolismo , Lipoilação , Oócitos/química , Oócitos/metabolismo , Folículo Ovariano/química , Proteínas/análise , Proteômica
8.
Reprod Fertil Dev ; 34(2): 1-26, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231385

RESUMO

Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.


Assuntos
Oócitos , Folículo Ovariano , Animais , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/fisiologia , Lipídeos , Oócitos/metabolismo , Folículo Ovariano/metabolismo
9.
Front Vet Sci ; 7: 584948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330709

RESUMO

Follicular fluid (FF) fills the interior portion of the ovarian antral follicle and provides a suitable microenvironment for the growth of the enclosed oocyte through molecular factors that originate from plasma and the secretions of follicular cells. FF contains extracellular nanovesicles (ffEVs), including 30-100-nm membrane-coated exosomes, which carry different types of RNA, proteins, and lipids and directly influence oocyte competence to develop embryo. In the present study, we aimed to characterize the protein cargo of EVs from the FF of 3-6-mm follicles and uncover the origins of ffEVs by assessing expression levels of corresponding mRNAs in bovine follicular cells and oocyte and cell proteomes. Isolated exosome-like ffEVs were 53.6 + 23.3 nm in size and could be internalized by cumulus-oocyte complex. Proteomes of ffEVs and granulosa cells (GC) were assessed using nanoflow liquid chromatography coupled with high-resolution tandem mass spectrometry after the gel fractionation of total proteins. In total, 460 protein isoforms corresponding to 322 unique proteins were identified in ffEVs; among them, 190 were also identified via GC. Gene Ontology terms related to the ribosome, protein and RNA folding, molecular transport, endocytosis, signal transduction, complement and coagulation cascades, apoptosis, and developmental biology pathways, including PI3K-Akt signaling, were significantly enriched features of ffEV proteins. FfEVs contain numerous ribosome and RNA-binding proteins, which may serve to compact different RNAs to regulate gene expression and RNA degradation, and might transfer ribosomal constituents to the oocyte. Majority of genes encoding ffEV proteins expressed at different levels in follicular cells and oocyte, corroborating with numerous proteins, which were reported in bovine oocyte and cumulus cells in other studies thus indicating possible origin of ffEV proteins. The limited abundance of several mRNAs within follicular cells indicated that corresponding ffEV proteins likely originated from circulating exosomes released by other tissues. Analysis of bovine ffEV transcriptome revealed that mRNAs present in ffEV accounted for only 18.3% of detected ffEV proteins. In conclusion, our study revealed numerous proteins within ffEVs, which originated from follicular and other cells. These proteins are likely involved in the maintenance of follicular homeostasis and may affect oocyte competence.

10.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932995

RESUMO

Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.


Assuntos
Líquido Folicular/metabolismo , Lipídeos/fisiologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Bovinos , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/metabolismo , Ovulação/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Células Tecais/metabolismo
11.
Cells ; 9(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316494

RESUMO

Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.


Assuntos
Evolução Biológica , Expressão Gênica/genética , Oócitos/crescimento & desenvolvimento , Animais , Feminino , Mamíferos
12.
Theriogenology ; 150: 113-121, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284210

RESUMO

The objective of this review is to provide new insights into the possible use of a proteomic method known as Intact Cell Matrix-Assisted Laser Desorption-ionization Time-Of-Flight Mass Spectrometry (ICM-MS) in animal clinical research. Here, we give an overview of the basics of this technique, its advantages and disadvantages compared with other proteomic approaches, past applications and future perspectives. A special emphasis on its implementation in animal reproduction science is given, including examples of the reliable use of ICM-MS on fertility screening. In mammals, the ICM-MS profiles from pig epididymal spermatozoa reflect the proteome changes that they undergo during epididymal maturation and could be associated with the acquisition of fertilizing ability. In chicken, using adequate pre-processing and bioinformatics analysis tools, sperm ICM-MS profiles showed characteristic spectral features that allowed their classification according to their actual fertilizing ability. The association of ICM-MS and Top-down proteomic strategies allowed the identification of chicken fertility biomarkers candidates such as protein vitelline membrane outer layer protein 1 (VMO-1) and avian beta-defensin 10 (AvBD10). In female reproduction, a similar approach on ovarian follicular cells allowed the identification of specific markers of oocyte maturation in the oocyte and surrounding cumulus cells. Altogether, these results indicate that ICM-MS profiling could be a suitable approach for molecular phenotyping of male and female gametes.


Assuntos
Gado , Proteômica , Reprodução/fisiologia , Animais , Regulação da Expressão Gênica , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Theriogenology ; 135: 65-72, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203089

RESUMO

Sperm capacitation, fertilization and embryo development take place in the oviduct during the periovulatory period of the estrous cycle. Phospholipids are crucial metabolites for sperm capacitation and early embryo development. The aim of this study was to monitor the abundance of phospholipids in the bovine oviductal fluid (OF) according to the stage of the estrous cycle and the side relative to ovulation. Pairs of bovine oviducts were collected in a slaughterhouse and classified into four stages of the estrous cycle: post-ovulatory (Post-ov), mid-luteal (Mid-lut), late-luteal (Late-lut) and pre-ovulatory (Pre-ov) phases (n = 17 cows/stage). Cell-free OF from oviducts ipsilateral and contralateral to the site of ovulation were analyzed using MALDI-TOF mass spectrometry. Lipid identification was achieved by high resolution mass spectrometry. A total of 274 lipid masses were detected in the mass range of 400-1000 Da, corresponding mostly to phosphatidylcholines (PC), lysoPC, phosphatidylethanolamine (PE), lysoPE and sphingomyelins (SM). Ipsilateral and contralateral OF did not differ in their lipid profiles at any stage of the cycle. However, 127 and 96 masses were differentially abundant between stages in ipsilateral and contralateral OF, respectively. Highest differences in lipid profiles were observed in the Pre-ov vs. Mid-lut and Pre-ov vs. Late-lut comparisons in both sides relative to ovulation. Differential abundance of specific molecules of PC, PE, SM and l-carnitine were observed at Pre-ov and Post-ov compared with the luteal phase. This work proposes new candidates potentially able to regulate sperm capacitation and early embryo development.


Assuntos
Bovinos/fisiologia , Ciclo Estral/fisiologia , Tubas Uterinas/metabolismo , Fosfolipídeos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Lipídeos/biossíntese , Fosfolipídeos/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Cells ; 8(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791486

RESUMO

During spermiogenesis, the proximal centriole forms a special microtubular structure: the centriolar adjunct. This structure appears at the spermatid stage, which is characterized by a condensed chromatin nucleus. We showed that the centriolar adjunct disappears completely in mature porcine spermatozoa. In humans, the centriolar adjunct remnants are present in a fraction of mature spermatids. For the first time, the structure of the centriolar adjunct in the cell, and its consequent impact on fertility, were examined. Ultrastructural analysis using transmission electron microscopy was performed on near 2000 spermatozoa per person, in two patients with idiopathic male sterility (IMS) and five healthy fertile donors. We measured the average length of the "proximal centriole + centriolar adjunct" complex in sections, where it had parallel orientation in the section plane, and found that it was significantly longer in the spermatozoa of IMS patients than in the spermatozoa of healthy donors. This difference was independent of chromatin condensation deficiency, which was also observed in the spermatozoa of IMS patients. We suggest that zygote arrest may be related to an incompletely disassembled centriolar adjunct in a mature spermatozoon. Therefore, centriolar adjunct length can be potentially used as a complementary criterion for the immaturity of spermatozoa in the diagnostics of IMS patients.


Assuntos
Centríolos/metabolismo , Fertilidade/fisiologia , Espermatogênese/fisiologia , Adulto , Animais , Centríolos/ultraestrutura , Cromatina/metabolismo , Humanos , Infertilidade Masculina/patologia , Masculino , Espermátides/metabolismo , Espermátides/ultraestrutura , Suínos , Doadores de Tecidos
15.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347829

RESUMO

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.


Assuntos
Metabolismo dos Lipídeos , Folículo Ovariano/metabolismo , Transcriptoma , Animais , Bovinos , Feminino
16.
Genome Biol Evol ; 10(10): 2629-2642, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060195

RESUMO

This work presents a systematic approach to study the conservation of genes between fruit flies and mammals. We have listed 971 Drosophila genes involved in female reproduction at the ovarian level and systematically looked for orthologs in the Ciona, zebrafish, coelacanth, lizard, chicken, and mouse. Depending on the species, the percentage of these Drosophila genes with at least one ortholog varies between 69% and 78%. In comparison, only 42% of all the Drosophila genes have an ortholog in the mouse genome (P < 0.0001), suggesting a dramatically higher evolutionary conservation of ovarian genes. The 177 Drosophila genes that have no ortholog in mice and other vertebrates correspond to genes that are involved in mechanisms of oogenesis that are specific to the fruit fly or the insects. Among 759 genes with at least one ortholog in the zebrafish, 73 have an expression enriched in the ovary in this species (RNA-seq data). Among 760 genes that have at least one ortholog in the mouse; 76 and 11 orthologs are reported to be preferentially and exclusively expressed in the mouse ovary, respectively (based on the UniGene expressed sequence tag database). Several of them are already known to play a key role in murine oogenesis and/or to be enriched in the mouse/zebrafish oocyte, whereas others have remained unreported. We have investigated, by RNA-seq and real-time quantitative PCR, the exclusive ovarian expression of 10 genes in fish and mammals. Overall, we have found several novel candidates potentially involved in mammalian oogenesis by an evolutionary approach and using the fruit fly as an animal model.


Assuntos
Cordados/genética , Drosophila melanogaster/genética , Oogênese/genética , Homologia de Sequência do Ácido Nucleico , Animais , Sequência de Bases , Evolução Biológica , Sequência Conservada , Feminino , Masculino , Camundongos
17.
Reprod Biol Endocrinol ; 16(1): 40, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29699561

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS: The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 µM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS: DHA (10 and 50 µM) increased granulosa cell proliferation and DHA 10 µM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 µM, and estradiol secretion at 1, 10 and 20 µM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 µM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 µM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS: These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.


Assuntos
Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Células da Granulosa/efeitos dos fármacos , Animais , Feminino , Expressão Gênica , Células da Granulosa/citologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
J Proteomics ; 175: 56-74, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28385661

RESUMO

Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. BIOLOGICAL SIGNIFICANCE: Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases.


Assuntos
Oócitos/citologia , Folículo Ovariano/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores/análise , Bovinos , Células do Cúmulo/química , Feminino , Células da Granulosa/química , Meiose , Oócitos/química , Folículo Ovariano/química
19.
J Ovarian Res ; 10(1): 74, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122003

RESUMO

BACKGROUND: Supplementation of bovine oocyte-cumulus complexes during in vitro maturation (IVM) with 1 µM of docosahexaenoic acid (DHA), C22:6 n-3 polyunsaturated fatty acid, was reported to improve in vitro embryo development. The objective of this paper was to decipher the mechanisms of DHA action. RESULTS: Transcriptomic analysis of 1 µM DHA-treated and control cumulus cells after 4 h IVM showed no significant difference in gene expression. MALDI-TOF mass spectrometry analysis of lipid profiles in DHA-treated and control oocytes and cumulus cells after IVM showed variations of only 3 out of 700 molecular species in oocytes and 7 out of 698 species in cumulus cells (p < 0.01). We showed expression of free fatty acid receptor FFAR4 in both oocytes and cumulus cells, this receptor is known to be activated by binding to DHA. FFAR4 protein was localized close to the cellular membrane by immunofluorescence. Functional studies demonstrated that supplementation with FFAR4 agonist TUG-891 (1 µM or 5 µM) during IVM led to an increased blastocyst rate (39.5% ± 4.1%, 41.3% ± 4.1%), similar to DHA 1 µM treatment (39.2% ± 4.1%) as compared to control (25.2% ± 3.6%). FFAR4 activation via TUG-891 led to beneficial effect on oocyte developmental competence and might explain in part similar effects of DHA. CONCLUSIONS: In conclusion, we suggested that low dose of DHA (1 µM) during IVM might activate regulatory mechanisms without evident effect on gene expression and lipid content in oocyte-cumulus complexes, likely through signaling pathways which need to be elucidated in further studies.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Animais , Bovinos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Técnicas de Maturação in Vitro de Oócitos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Reprod Fertil Dev ; 29(12): 2479-2495, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28672116

RESUMO

Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LßT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LßT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LßT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.


Assuntos
Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Resistina/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Camundongos , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fosforilação , Resistina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA