RESUMO
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Assuntos
Aeromonas salmonicida , Proteínas de Bactérias , Doenças dos Peixes , Animais , Aeromonas salmonicida/patogenicidade , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/microbiologia , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Perciformes/microbiologia , Furunculose/microbiologiaRESUMO
Adult vertebrate cartilage is usually quiescent. Some vertebrates possess ocular scleral skeletons composed of cartilage or bone. The morphological characteristics of the spotted wolffish (Anarhichas minor) scleral skeleton have not been described. Here we assessed the scleral skeletons of cultured spotted wolffish, a globally threatened marine species. The healthy spotted wolffish we assessed had scleral skeletons with a low percentage of cells staining for the chondrogenesis marker sex-determining region Y-box (Sox) 9, but harboured a population of intraocular cells that co-express immunoglobulin M (IgM) and Sox9. Scleral skeletons of spotted wolffish with grossly observable eye abnormalities displayed a high degree of perochondrial activation as evidenced by cellular morphology and expression of proliferating cell nuclear antigen (PCNA) and phosphotyrosine. Cells staining for cluster of differentiation (CD) 45 and IgM accumulated around sites of active chondrogenesis, which contained cells that strongly expressed Sox9. The level of scleral chondrogenesis and the numbers of scleral cartilage PCNA positive cells increased with the temperature of the water in which spotted wolffish were cultured. Our results provide new knowledge of differing Sox9 spatial tissue expression patterns during chondrogenesis in normal control and ocular insult paradigms. Our work also provides evidence that spotted wolffish possess an inherent scleral chondrogenesis response that may be sensitive to temperature. This work also advances the fundamental knowledge of teleost ocular skeletal systems.
Assuntos
Condrogênese , Fatores de Transcrição SOX9 , Animais , Fatores de Transcrição SOX9/metabolismo , Esclera/metabolismo , Temperatura , Imunoglobulina M/metabolismo , Olho/metabolismo , Água/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Cartilagem/metabolismoRESUMO
A better understanding of unique anatomical and functional features of the visual systems of teleost fish could provide key knowledge on how these systems influence the health and survival of these animals in both wild and culture environments. We took a systematic approach to assess some of the visual systems of spotted wolffish (Anarhichas minor), a species of increasing importance in North Atlantic aquaculture initiatives. The lumpfish (Cyclopterus lumpus) was included in these studies in a comparative manner to provide reference. Histology, light and electron microscopy were used to study the spatial distribution and occurrence of cone photoreceptor cells and the nature of the retinal tissues, while immunohistochemistry was used to explore the expression patterns of two photoreceptor markers, XAP-1 and XAP-2, in both species. A marine bacterial infection paradigm in lumpfish was used to assess how host-pathogen responses might impact the expression of these photoreceptor markers in these animals. We define a basic photoreceptor mosaic and present an ultrastructural to macroscopic geographical configuration of the retinal pigment tissues in both animals. Photoreceptor markers XAP-1 and XAP-2 have novel distribution patterns in spotted wolffish and lumpfish retinas, and exogenous pathogenic influences can affect the normal expression pattern of XAP-1 in lumpfish. Live tank-side ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) revealed that normal cultured spotted wolffish display novel variations in the shape of the retinal tissue. These two complementary imaging findings suggest that spotted wolffish harbour unique ocular features not yet described in marine teleosts and that visual function might involve specific retinal tissue shape dynamics in these animals. Finally, extensive endogenous biofluorescence is present in the retinal tissues of both animals, which raises questions about how these animals might use retinal tissue in novel ways for visual perception and/or communication. This work advances fundamental knowledge on the visual systems of two economically important but now threatened North Atlantic teleosts and provides a basic foundation for further research on the visual systems of these animals in health versus disease settings. This work could also be useful for understanding and optimizing the health and welfare of lumpfish and spotted wolffish in aquaculture towards a one health or integrative perspective.
Assuntos
Aquicultura , Doenças dos Peixes , Perciformes , Animais , Retina/ultraestrutura , Olho/ultraestruturaRESUMO
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Assuntos
Doenças dos Peixes , Perfilação da Expressão Gênica , Rim Cefálico , Imunidade Inata , Renibacterium , Transcriptoma , Animais , Rim Cefálico/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Renibacterium/imunologia , Renibacterium/genética , Imunidade Inata/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Adaptativa/genética , Peixes/imunologia , Peixes/microbiologia , Doença Crônica , Perciformes/imunologia , Perciformes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Nefropatias/imunologia , Nefropatias/microbiologia , Nefropatias/genética , Nefropatias/veterinária , Micrococcaceae/genética , Micrococcaceae/imunologiaRESUMO
Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the â¼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.
Assuntos
Imunidade Adaptativa , Aeromonas salmonicida , Mudança Climática , Doenças dos Peixes , Animais , Aeromonas salmonicida/imunologia , Aeromonas salmonicida/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Hipóxia/imunologia , Imunidade Inata , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Peixes/imunologia , Peixes/microbiologia , Oxigênio/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Antígenos de Bactérias/imunologiaRESUMO
Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Assuntos
Imunidade Adaptativa , Aeromonas salmonicida , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas salmonicida/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Vacinas Bacterianas/imunologia , Furunculose/imunologia , Furunculose/prevenção & controle , Furunculose/microbiologia , Perciformes/imunologia , Antígenos de Bactérias/imunologiaRESUMO
Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by Moritella viscosa. Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) M. viscosa challenges and evaluated the immunogenicity of M. viscosa cell components. IgM titers were determined after infection, post boost immunization, and post challenge with M. viscosa. IgM+ (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the M. viscosa outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against M. viscosa strain, and OMVs are the most immunogenic component of M. viscosa cells.
RESUMO
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AßOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AßOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AßOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AßOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AßOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AßOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
RESUMO
Ulcer diseases are a recalcitrant issue at Atlantic salmon (Salmo salar) aquaculture cage-sites across the North Atlantic region. Classical ulcerative outbreaks (also called winter ulcer disease) refer to a skin infection caused by Moritella viscosa. However, several bacterial species are frequently isolated from ulcer disease events, and it is unclear if other undescribed pathogens are implicated in ulcer disease in Atlantic salmon. Although different polyvalent vaccines are used against M. viscosa, ulcerative outbreaks are continuously reported in Atlantic salmon in Canada. This study analyzed the phenotypical and genomic characteristics of Vibrio sp. J383 isolated from internal organs of vaccinated farmed Atlantic salmon displaying clinical signs of ulcer disease. Infection assays conducted on vaccinated farmed Atlantic salmon and revealed that Vibrio sp. J383 causes a low level of mortalities when administered intracelomic at doses ranging from 107-108 CFU/dose. Vibrio sp. J383 persisted in the blood of infected fish for at least 8 weeks at 10 and 12 °C. Clinical signs of this disease were greatest 12 °C, but no mortality and bacteremia were observed at 16 °C. The Vibrio sp. J383 genome (5,902,734 bp) has two chromosomes of 3,633,265 bp and 2,068,312 bp, respectively, and one large plasmid of 201,166 bp. Phylogenetic and comparative analyses indicated that Vibrio sp. J383 is related to V. splendidus, with 93% identity. Furthermore, the phenotypic analysis showed that there were significant differences between Vibrio sp. J383 and other Vibrio spp, suggesting J383 is a novel Vibrio species adapted to cold temperatures.
RESUMO
Vibrio anguillarum is the most frequent pathogen affecting fish worldwide. The only known virulent strains of V. anguillarum are serotypes O1, O2, and O3. Genetic differences between the serotypes that could shed insight on the evolution and serotype differences of this marine pathogen are unknown. Here, we fully sequenced and characterized a strain of V. anguillarum O1 (J382) isolated from winter steelhead trout (Oncorhynchus mykiss irideus) in British Columbia, Canada. Koch's postulates using the O1 strain were replicated in naïve lumpfish (Cyclopterus lumpus) and compared to O2. Phenotypic and genotypic comparisons were conducted for serotypes O1, O2, and O3, using biochemical tests and bioinformatic tools, respectively. The genome of V. anguillarum O1 (J382) contains two chromosomes (3.13 Mb and 1.03 Mb) and two typical pJM1-like plasmids (65,573 and 76,959 bp). Furthermore, V. anguillarum O1 (J382) displayed resistance to colistin sulphate, which differs from serotype O2 and could be attributed to the presence of the ugd gene. Comparative genomic analysis, among the serotypes, showed that intra-species evolution is driven by insertion sequences, bacteriophages, and a different repertoire of putative ncRNAs. Genetic heterogeneity in the O-antigen biosynthesis gene cluster is characterized by the absence or the presence of unique genes, which could result in differences in the immune evasion mechanisms employed by the respective serotypes. This study contributes to understanding the genetic differences among V. anguillarum serovars and their evolution.
RESUMO
Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.
RESUMO
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Animais , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Duplicação Gênica , Virulência , Riboflavina , Peixes , Doenças dos Peixes/genéticaRESUMO
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Assuntos
Receptores de Bacteriófagos , Bacteriófagos , Genômica , Receptores de Bacteriófagos/genética , Receptores de Bacteriófagos/imunologia , Bacteriófagos/genética , Proteínas de Transporte , Enterobacteriaceae/genética , Escherichia coli , Filogenia , Fagos de SalmonellaRESUMO
The hippocampus is a brain region implicated in synaptic plasticity and memory formation; both processes require neuronal Ca2+ signals generated by Ca2+ entry via plasma membrane Ca2+ channels and Ca2+ release from the endoplasmic reticulum (ER). Through Ca2+-induced Ca2+ release, the ER-resident ryanodine receptor (RyR) Ca2+ channels amplify and propagate Ca2+ entry signals, leading to activation of cytoplasmic and nuclear Ca2+-dependent signaling pathways required for synaptic plasticity and memory processes. Earlier reports have shown that mice and rat hippocampus expresses mainly the RyR2 isoform, with lower expression levels of the RyR3 isoform and almost undetectable levels of the RyR1 isoform; both the RyR2 and RyR3 isoforms have central roles in synaptic plasticity and hippocampal-dependent memory processes. Here, we describe that dendritic spines of rat primary hippocampal neurons express the RyR3 channel isoform, which is also expressed in the neuronal body and neurites. In contrast, the RyR2 isoform, which is widely expressed in the neuronal body and neurites of primary hippocampal neurons, is absent from the dendritic spines. We propose that this asymmetric distribution is of relevance for hippocampal neuronal function. We suggest that the RyR3 isoform amplifies activity-generated Ca2+ entry signals at postsynaptic dendritic spines, from where they propagate to the dendrite and activate primarily RyR2-mediated Ca2+ release, leading to Ca2+ signal propagation into the soma and the nucleus where they activate the expression of genes that mediate synaptic plasticity and memory.
Assuntos
Espinhas Dendríticas , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Ratos , Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
Immune responses to infectious diseases impacting lumpfish (Cyclopterus lumpus) eye tissue are only starting to be studied at a molecular and histopathological level. In this study, we extend our understanding of lumpfish sensory organ anatomy, of components of the lumpfish nasal and ocular immune system and the nature of the intraocular response to Vibrio anguillarum infection. We have evaluated the expression of cluster of differentiation (CD) 45 protein, a tyrosine phosphatase, in larval and juvenile lumpfish tissues in order to spatially survey ocular and related head structures that may participate in early stages of intraocular immune responses. We provide here a histological mapping of the larval lumpfish nasal chamber system since its connectively with the eye though mucosal epithelia have not been explored. These results build upon our growing understanding of the lumpfish intraocular immune response to pathogens, exemplified herein by experimental nasally delivered V. anguillarum infection. CD45 is developmentally regulated in lumpfish eyes and periocular anatomy with early expression appearing in larvae in corneal epithelium and in nasal structures adjacent to the eye. Normal juvenile and adult lumpfish eyes express CD45 in the corneal epithelium, in leukocyte cells within blood vessel lumens of the rete mirabile, choroid body and choriocapillaris vasculatures. Experimental nasally delivered V. anguillarum infection led to qualitative and quantitative changes in CD45 expression in head kidney renal tubule tissues by 7 days post infection (dpi). The same animals showed redistribution and upregulation of corneal epithelial CD45 expression, corneal epithelial dysplasia and an increased frequency of CD45+ cells in ocular vasculature. Interestingly, while CD45 upregulation and/or CD45+ cell infiltration into inner ocular and retinal tissues was not observed under this experimental scenario, subtle neural retinal changes were observed in infected fish. This work provides new fundamental knowledge on North Atlantic teleost visual systems and vision biology in general.
Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Animais , Larva , Monoéster Fosfórico Hidrolases , Tirosina , Vibrioses/veterináriaRESUMO
Xanthomonas arboricola pv. juglandis (hereafter X. juglandis) is the etiological agent of walnut blight, the most important bacterial disease affecting walnut production worldwide. Currently, the disease is treated mainly with copper-derived compounds (e.g., CuSO4) despite the evidence of genetic resistance in these strains. Regarding the effectiveness and sustainability, the use of a bacteriophage appears to be a biocontrol alternative to reduce X. juglandis load and symptomatology of walnut blight. Here, the phages f20-Xaj, f29-Xaj, and f30-Xaj were characterized, and their effectiveness in walnut orchards against walnut blight was determined. These bacteriophages showed a specific lytic infection in X. juglandis strains isolated from Chile and France. Phylogenetic analysis of the complete genome of f20-Xaj and f30-Xaj indicates that these phages belong to the Pradovirus genus. In the field, the cocktail of these bacteriophages showed similar effectivity to CuSO4 in the reduction of incidence and severity in walnut tissue. Moreover, the bacterial load of X. juglandis was significantly reduced in the presence of bacteriophages in contrast to a CuSO4 treatment. These results show that the use of bacteriophages can be an alternative to combat the symptoms of walnut blight caused by X. juglandis.
Assuntos
Bacteriófagos , Juglans , Xanthomonas , Bacteriófagos/genética , Juglans/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controleRESUMO
Marine finfish aquaculture is affected by diverse infectious diseases, and they commonly occur as co-infection. Some of the most frequent and prevalent Gram-negative bacterial pathogens of the finfish aquaculture include Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa. To prevent co-infections in aquaculture, polyvalent or universal vaccines would be ideal. Commercial polyvalent vaccines against some of these pathogens are based on whole inactivated microbes and their efficacy is controversial. Identification of common antigens can contribute to the development of effective universal or polyvalent vaccines. In this study, we identified common and unique antigens of P. salmonis, A. salmonicida, Y. ruckeri, V. anguillarum and M. viscosa based on a reverse vaccinology pipeline. We screened the proteome of several strains using complete available genomes and identified a total of 154 potential antigens, 74 of these identified antigens corresponded to secreted proteins, and 80 corresponded to exposed outer membrane proteins (OMPs). Further analysis revealed the outer membrane antigens TonB-dependent siderophore receptor, OMP assembly factor BamA, the LPS assembly protein LptD and secreted antigens flagellar hook assembly protein FlgD and flagellar basal body rod protein FlgG are present in all pathogens used in this study. Sequence and structural alignment of these antigens showed relatively low percentage sequence identity but good structural homology. Common domains harboring several B-cells and T-cell epitopes binding to major histocompatibility (MHC) class I and II were identified. Selected peptides were evaluated for docking with Atlantic salmon (Salmo salar) and Lumpfish MHC class II. Interaction of common peptide-MHC class II showed good in-silico binding affinities and dissociation constants between -10.3 to -6.5 kcal mol-1 and 5.10 × 10-9 to 9.4 × 10-6 M. This study provided the first list of antigens that can be used for the development of polyvalent or universal vaccines against these Gram-negative bacterial pathogens affecting finfish aquaculture.
RESUMO
Aeromonas salmonicida is a global distributed Gram-negative teleost pathogen, affecting mainly salmonids in fresh and marine environments. A. salmonicida strains are classified as typical or atypical depending on their origin of isolation and phenotype. Five subspecies have been described, where A. salmonicida subsp. salmonicida is the only typical subspecies, and the subsp. achromogenes, masoucida, smithia, and pectinolytica are considered atypical. Genomic differences between A. salmonicida subsp. salmonicida isolates and their relationship with the current classification have not been explored. Here, we sequenced and compared the complete closed genomes of four virulent strains to elucidate their molecular diversity and pathogenic evolution using the more accurate genomic information so far. Phenotypes, biochemical, and enzymatic profiles were determined. PacBio and MiSeq sequencing platforms were utilized for genome sequencing. Comparative genomics showed that atypical strains belong to the subsp. salmonicida, with 99.55% ± 0.25% identity with each other, and are closely related to typical strains. The typical strain A. salmonicida J223 is closely related to typical strains, with 99.17% identity with the A. salmonicida A449. Genomic differences between atypical and typical strains are strictly related to insertion sequences (ISs) activity. The absence and presence of genes encoding for virulence factors, transcriptional regulators, and non-coding RNAs are the most significant differences between typical and atypical strains that affect their phenotypes. Plasmidome plays an important role in A. salmonicida virulence and genome plasticity. Here, we determined that typical strains harbor a larger number of plasmids and virulence-related genes that contribute to its acute virulence. In contrast, atypical strains harbor a single, large plasmid and a smaller number of virulence genes, reflected by their less acute virulence and chronic infection. The relationship between phenotype and A. salmonicida subspecies' taxonomy is not evident. Comparative genomic analysis based on completed genomes revealed that the subspecies classification is more of a reflection of the ecological niche occupied by bacteria than their divergences at the genomic level except for their accessory genome.
RESUMO
The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cálcio/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Técnicas de Cultura de Células , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/farmacologia , Piridazinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sinapses/fisiologia , Técnicas de Cultura de TecidosRESUMO
Vibrio anguillarum, a marine bacterial pathogen that causes vibriosis, is a recurrent pathogen of lumpfish (Cyclopterus lumpus). Lumpfish is utilized as a cleaner fish in the Atlantic salmon (Salmo salar) aquaculture in the North Atlantic region because of its ability to visualize and prey on the ectoparasite sea lice (Lepeophtheirus salmonis) on the skin of Atlantic salmon, and its performance in cold environments. Lumpfish immunity is critical for optimal performance and sea lice removal. Oral vaccine delivery at a young age is the desired method for fish immunization because is easy to use, reduces fish stress during immunization, and can be applied on a large scale while the fish are at a young age. However, the efficacy of orally delivered inactivated vaccines is controversial. In this study, we evaluated the effectiveness of a V. anguillarum bacterin orally delivered to cultured lumpfish and contrasted it to an intraperitoneal (i.p.) boost delivery. We bio-encapsulated V. anguillarum bacterin in Artemia salina live-feed and orally immunized lumpfish larvae. Vaccine intake and immune response were evaluated by microscopy and quantitative polymerase chain reaction (qPCR) analysis, respectively. qPCR analyses showed that the oral immunization of lumpfish larvae resulted in a subtle stimulation of canonical immune transcripts such as il8b, il10, igha, ighmc, ighb, ccl19, ccl20, cd8a, cd74, ifng, and lgp2. Nine months after oral immunization, one group was orally boosted, and a second group was both orally and i.p. boosted. Two months after boost immunization, lumpfish were challenged with V. anguillarum (7.8 × 105 CFU dose-1). Orally boosted fish showed a relative percentage of survival (RPS) of 2%. In contrast, the oral and i.p. boosted group showed a RPS of 75.5% (p < 0.0001). V. anguillarum bacterin that had been orally delivered was not effective in lumpfish, which is in contrast to the i.p. delivered bacterin that protected the lumpfish against vibriosis. This suggests that orally administered V. anguillarum bacterin did not reach the deep lymphoid tissues, either in the larvae or juvenile fish, therefore oral immunization was not effective. Oral vaccines that are capable of crossing the epithelium and reach deep lymphoid tissues are required to confer an effective protection to lumpfish against V. anguillarum.