Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Future Microbiol ; 18: 1381-1398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962486

RESUMO

Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Membrana Celular , Parede Celular/metabolismo , Lipoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Front Microbiol ; 11: 586285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193236

RESUMO

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world's leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.

3.
Virulence ; 10(1): 1026-1033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31782338

RESUMO

In this study, we characterized the role of Rv2617c in the virulence of Mycobacterium tuberculosis. Rv2617c is a protein of unknown function unique to M. tuberculosis complex (MTC) and Mycobacterium leprae. In vitro, this protein interacts with the virulence factor P36 (also named Erp) and KdpF, a protein linked to nitrosative stress. Here, we showed that knockout of the Rv2617c gene in M. tuberculosis CDC1551 reduced the replication of the pathogen in a mouse model of infection and favored the trafficking of mycobacteria to phagolysosomes. We also demonstrated that Rv2617c and P36 are required for resistance to in vitro hydrogen peroxide treatment in M. tuberculosis and Mycobacterium bovis, respectively. These findings indicate Rv2617c and P36 act in concert to prevent bacterial damage upon oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Fatores de Virulência/genética , Animais , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Virulência
4.
Vet Microbiol ; 222: 30-38, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080670

RESUMO

Mycobacterium bovis is the causative agent of bovine tuberculosis and is a member of Mycobacterium tuberculosis complex, which causes tuberculosis in a number of mammals including humans. Previous studies have shown that the genes encoding the two-component system PhoPR, which regulates several genes involved in the virulence of M. tuberculosis, are polymorphic in M. bovis, when compared to M. tuberculosis, which results in a dysfunctional two-component system. In this study we investigated the role of PhoPR in two M. bovis strains with differing degrees of virulence. We found that the deletion of phoP in an M. bovis isolate reduced its capacity of inducing phagosomal arrest in bovine macrophages. By gene expression analysis, we demonstrated that, in both M. bovis strains, PhoP regulates the expression of a putative lipid desaturase Mb1404-Mb1405, a protein involved in redox stress AhpC, the sulfolipid transporter Mmpl8 and the secreted antigen ESAT-6. Furthermore, the lack of PhoP increased the sensitivity to acidic stress and alteration of the biofilm/pellicle formation of M. bovis. Both these phenotypes are connected to bacterial redox homeostasis. Therefore, the results of this study suggest a role of PhoPR in M. bovis to be linked to the mechanisms that mycobacteria display to maintain their redox balance.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Animais , Biofilmes/crescimento & desenvolvimento , Bovinos , Homeostase/genética , Humanos , Macrófagos/microbiologia , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Oxirredução , Fenótipo , Estresse Fisiológico/genética , Tuberculose Bovina , Virulência/genética
5.
Sci Rep ; 6: 29332, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389464

RESUMO

Sorting of luminal and membrane proteins into phagosomes is critical for the immune function of this organelle. However, little is known about the mechanisms that contribute to the spatiotemporal regulation of this process. Here, we investigated the role of the proneurotrophin receptor sortilin during phagosome maturation and mycobacterial killing. We show that this receptor is acquired by mycobacteria-containing phagosomes via interactions with the adaptor proteins AP-1 and GGAs. Interestingly, the phagosomal association of sortilin is critical for the delivery of acid sphingomyelinase (ASMase) and required for efficient phagosome maturation. Macrophages from Sort1(-/-) mice are less efficient in restricting the growth of Mycobacterium bovis BCG and M. tuberculosis. In vivo, Sort1(-/-) mice showed a substantial increase in cellular infiltration of neutrophils in their lungs and higher bacterial burden after infection with M. tuberculosis. Altogether, sortilin defines a pathway required for optimal intracellular mycobacteria control and lung inflammation in vivo.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Carga Bacteriana , Modelos Animais de Doenças , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Viabilidade Microbiana , Mycobacterium bovis/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
6.
Cell Microbiol ; 16(9): 1425-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24779357

RESUMO

Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.


Assuntos
Macrófagos/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium/fisiologia , Animais , Feminino , Glicolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium/isolamento & purificação , Mycobacterium bovis/fisiologia
7.
Cell Microbiol ; 12(1): 10-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19888990

RESUMO

The host cell recognition and removal of invading pathogens are crucial for the control of microbial infections. However, several microorganisms have developed mechanisms that allow them to survive and replicate intracellularly. Autophagy is an ubiquitous physiological pathway in eukaryotic cells, which maintains the cellular homeostasis and acts as a cell quality control mechanism to eliminate aged organelles and unnecessary structures. In addition, autophagy has an important role as a housekeeper since cells that have to get rid of invading pathogens use this pathway to assist this eradication. In this review we will summarize some strategies employed by bacterial pathogens to modulate autophagy to their own benefit and, on the other hand, the role of autophagy as a protective process of the host cell. In addition, we will discuss here recent studies that show the association of LC3 to a pathogen-containing compartment without a classical autophagic sequestering process (i.e. formation of a double membrane structure).


Assuntos
Autofagia/fisiologia , Bactérias/patogenicidade , Animais , Autofagia/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Biológicos
8.
Autophagy ; 5(3): 370-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19164948

RESUMO

Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel-forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.


Assuntos
Autofagia , Proteínas de Bactérias/fisiologia , Citotoxinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Estômago/microbiologia , Animais , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
9.
Autophagy ; 5(1): 6-18, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19115481

RESUMO

The etiologic agent of Chagas disease, Trypanosoma cruzi, infects mammalian cells activating a signal transduction cascade that leads to the formation of its parasitophorous vacuole. Previous works have demonstrated the crucial role of lysosomes in the establishment of T. cruzi infection. In this work we have studied the possible relationship between this parasite and the host cell autophagy. We show, for the first time, that the vacuole containing T. cruzi (TcPV) is decorated by the host cell autophagic protein LC3. Furthermore, live cell imaging experiments indicate that autolysosomes are recruited to parasite entry sites. Interestingly, starvation or pharmacological induction of autophagy before infection significantly increased the number of infected cells whereas inhibitors of this pathway reduced the invasion. In addition, the absence of Atg5 or the reduced expression of Beclin 1 -- two proteins required at the initial steps of autophagosome formation -- limited parasite entry and reduced the association between TcPV and the classical lysosomal marker Lamp-1. These results indicate that mammalian autophagy is a key process that favors the colonization of T. cruzi in the host cell.


Assuntos
Autofagia , Interações Hospedeiro-Parasita , Lisossomos/parasitologia , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Animais , Biomarcadores/metabolismo , Células CHO , Diferenciação Celular , Cricetinae , Cricetulus , Fibroblastos/citologia , Fibroblastos/parasitologia , Camundongos , Fagossomos/metabolismo , Fagossomos/parasitologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/parasitologia , Vacúolos/metabolismo , Vacúolos/parasitologia
10.
Cell Microbiol ; 7(7): 981-93, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15953030

RESUMO

Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.


Assuntos
Autofagia , Coxiella burnetii/crescimento & desenvolvimento , Vacúolos/microbiologia , Animais , Células CHO , Coxiella burnetii/patogenicidade , Cricetinae , Genes Reporter , Proteínas de Fluorescência Verde/análise , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Vacúolos/química , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA