Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Immunol ; 15: 1372193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812507

RESUMO

Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas/imunologia , Citocinas/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Vacinação , Seguimentos
2.
Front Immunol ; 14: 1215893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533867

RESUMO

Introduction: The human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. Methods: PBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. Results: Compared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-γ-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. Conclusion: Immunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/, identifier NCT03213405.


Assuntos
Vírus Sincicial Respiratório Humano , Humanos , Adulto , Recém-Nascido , Vacina BCG , Imunidade Celular , Imunização , Vacinação
3.
J Infect Dis ; 228(7): 857-867, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37572355

RESUMO

BACKGROUND: We sought to identify potential antigens for discerning between humoral responses elicited after vaccination with CoronaVac (a severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] inactivated vaccine), natural infection, or breakthrough infection. METHODS: Serum samples obtained from volunteers immunized with CoronaVac (2 and 3 doses), breakthrough case patients, and from convalescent individuals were analyzed to determine the immunoglobulin (Ig) G responses against 3 structural and 8 nonstructural SARS-CoV-2 antigens. RESULTS: Immunization with CoronaVac induced higher levels of antibodies against the viral membrane (M) protein compared with convalescent subjects both after primary vaccination and after a booster dose. Individuals receiving a booster dose displayed equivalent levels of IgG antibodies against the nucleocapsid (N) protein, similar to convalescent subjects. Breakthrough case patients produced the highest antibody levels against the N and M proteins. Antibodies against nonstructural viral proteins were present in >50% of the convalescent subjects. CONCLUSIONS: Vaccinated individuals elicited a different humoral response compared to convalescent subjects. The analysis of particular SARS-CoV-2 antigens could be used as biomarkers for determining infection in subjects previously vaccinated with CoronaVac.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vírion , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinação
4.
EBioMedicine ; 91: 104563, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37099842

RESUMO

BACKGROUND: The Omicron variant has challenged the control of the COVID-19 pandemic due to its immuno-evasive properties. The administration of a booster dose of a SARS-CoV-2 vaccine showed positive effects in the immunogenicity against SARS-CoV-2, effect that is even enhanced after the administration of a second booster. METHODS: During a phase-3 clinical trial, we evaluated the effect of a second booster of CoronaVac®, an inactivated vaccine administered 6 months after the first booster, in the neutralization of SARS-CoV-2 (n = 87). In parallel, cellular immunity (n = 45) was analyzed in stimulated peripheral mononuclear cells by flow cytometry and ELISPOT. FINDINGS: Although a 2.5-fold increase in neutralization of the ancestral SARS-CoV-2 was observed after the second booster when compared with prior its administration (Geometric mean units p < 0.0001; Geometric mean titer p = 0.0002), a poor neutralization against the Omicron variant was detected. Additionally, the activation of specific CD4+ T lymphocytes remained stable after the second booster and, importantly, equivalent activation of CD4+ T lymphocytes against the Omicron variant and the ancestral SARS-CoV-2 were found. INTERPRETATION: Although the neutralizing response against the Omicron variant after the second booster of CoronaVac® was slightly increased, these levels are far from those observed against the ancestral SARS-CoV-2 and could most likely fail to neutralize the virus. In contrast, a robust CD4+T cell response may confer protection against the Omicron variant. FUNDING: The Ministry of Health, Government of Chile, the Confederation of Production and Commerce, Chile and SINOVAC Biotech.NIHNIAID. The Millennium Institute on Immunology and Immunotherapy.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Vacinas de Produtos Inativados , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
mBio ; 13(6): e0131122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36383021

RESUMO

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD4+ T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD4+ T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD4+ T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials.gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD4+ T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Criança , Pré-Escolar , Anticorpos Neutralizantes , Vacinas de Produtos Inativados , Anticorpos Antivirais
6.
Front Cell Infect Microbiol ; 12: 949469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225231

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.


Assuntos
Infecções Pneumocócicas , Idoso , Criança , Humanos , Imunização , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Proteínas Recombinantes , Sorogrupo , Streptococcus pneumoniae , Vacinas Conjugadas
7.
Elife ; 112022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226829

RESUMO

Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged ≥18 years. Volunteers received two doses of CoronaVac separated by 2 (0-14 schedule) or 4 weeks (0-28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-γ and the expression of activation induced markers in CD4+ T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-γ secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule. Funding: Ministry of Health, Government of Chile, Confederation of Production and Commerce & Millennium Institute on Immunology and Immunotherapy, Chile. Clinical trial number: NCT04651790.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Esquemas de Imunização , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Imunidade Humoral , Interferons , Leucócitos Mononucleares , SARS-CoV-2
8.
Clin Exp Immunol ; 210(1): 68-78, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36036806

RESUMO

Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.


Assuntos
Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Vírus , Humanos , Lactente , Criança , Infecções por Vírus Respiratório Sincicial/diagnóstico , Interleucina-33 , Interleucina-3 , Interleucina-8 , Vírus Sinciciais Respiratórios , Citocinas , Índice de Gravidade de Doença , Biomarcadores , RNA Mensageiro
9.
mBio ; 13(4): e0142322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35946814

RESUMO

CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization (WHO). Previous studies reported increased levels of neutralizing antibodies and specific T cells 2 and 4 weeks after two doses of CoronaVac; these levels were significantly reduced at 6 to 8 months after the two doses. Here, we report the effect of a booster dose of CoronaVac on the anti-SARS-CoV-2 immune response generated against the variants of concern (VOCs), Delta and Omicron, in adults participating in a phase III clinical trial in Chile. Volunteers immunized with two doses of CoronaVac in a 4-week interval received a booster dose of the same vaccine between 24 and 30 weeks after the second dose. Neutralization capacities and T cell activation against VOCs Delta and Omicron were assessed 4 weeks after the booster dose. We observed a significant increase in neutralizing antibodies 4 weeks after the booster dose. We also observed a rise in anti-SARS-CoV-2-specific CD4+ T cells over time, and these cells reached a peak 4 weeks after the booster dose. Furthermore, neutralizing antibodies and SARS-CoV-2-specific T cells induced by the booster showed activity against VOCs Delta and Omicron. Our results show that a booster dose of CoronaVac increases adults' humoral and cellular anti-SARS-CoV-2 immune responses. In addition, immunity induced by a booster dose of CoronaVac is active against VOCs, suggesting adequate protection. IMPORTANCE CoronaVac is an inactivated vaccine against SARS-CoV-2 that has been approved by WHO for emergency use. Phase III clinical trials are in progress in several countries, including China, Brazil, Turkey, and Chile, and have shown safety and immunogenicity after two doses of the vaccine. This report characterizes immune responses induced by two doses of CoronaVac followed by a booster dose 5 months after the second dose in healthy Chilean adults. The data reported here show that a booster dose increased the immune responses against SARS-CoV-2, enhancing levels of neutralizing antibodies against the ancestral strain and VOCs. Similarly, anti-SARS-CoV-2 CD4+ T cell responses were increased following the booster dose. In contrast, levels of gamma interferon secretion and T cell activation against the VOCs Delta and Omicron were not significantly different from those for the ancestral strain. Therefore, a third dose of CoronaVac in a homologous vaccination schedule improves its immunogenicity in healthy volunteers.


Assuntos
COVID-19 , Vacinas Virais , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T
10.
medRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441179

RESUMO

Background: CoronaVac ® is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization. Previous studies reported increased levels of neutralizing antibodies and specific T cells two- and four-weeks after two doses of CoronaVac ® , but the levels of neutralizing antibodies are reduced at six to eight months after two doses. Here we report the effect of a booster dose of CoronaVac ® on the anti-SARS-CoV-2 immune response generated against variants of concern (VOC) Delta and Omicron in adults participating in a phase 3 clinical trial in Chile. Methods: Volunteers immunized with two doses of CoronaVac ® in a four-week interval received a booster dose of the same vaccine between twenty-four and thirty weeks after the 2nd dose. Four weeks after the booster dose, neutralizing antibodies and T cell responses were measured. Neutralization capacities and T cell activation against VOC Delta and Omicron were detected at four weeks after the booster dose. Findings: We observed a significant increase in neutralizing antibodies at four weeks after the booster dose. We also observed an increase in CD4 + T cells numbers over time, reaching a peak at four weeks after the booster dose. Furthermore, neutralizing antibodies and SARS-CoV-2 specific T cells induced by the booster showed activity against VOC Delta and Omicron. Interpretation: Our results show that a booster dose of CoronaVac ® increases the anti-SARS-CoV-2 humoral and cellular immune responses in adults. Immunity induced by a booster dose of CoronaVac ® is active against VOC, suggesting an effective protection.

11.
Clin Infect Dis ; 75(1): e792-e804, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34537835

RESUMO

BACKGROUND: The development of effective vaccines against coronavirus disease 2019 is a global priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine with promising safety and immunogenicity profiles. This article reports safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 years in a phase 3 clinical trial. METHODS: Volunteers randomly received 2 doses of CoronaVac or placebo, separated by 2 weeks. A total of 434 volunteers were enrolled, 397 aged 18-59 years and 37 aged ≥60 years. Solicited and unsolicited adverse reactions were registered from all volunteers. Blood samples were obtained from a subset of volunteers and analyzed for humoral and cellular measures of immunogenicity. RESULTS: The primary adverse reaction in the 434 volunteers was pain at the injection site, with a higher incidence in the vaccine than in the placebo arm. Adverse reactions observed were mostly mild and local. No severe adverse events were reported. The humoral evaluation was performed on 81 volunteers. Seroconversion rates for specific anti-S1-receptor binding domain (RBD) immunoglobulin G (IgG) were 82.22% and 84.44% in the 18-59 year age group and 62.69% and 70.37% in the ≥60 year age group, 2 and 4 weeks after the second dose, respectively. A significant increase in circulating neutralizing antibodies was detected 2 and 4 weeks after the second dose. The cellular evaluation was performed on 47 volunteers. We detected a significant induction of T-cell responses characterized by the secretion of interferon-γ (IFN-γ) upon stimulation with Mega Pools of peptides from SARS-CoV-2. CONCLUSIONS: Immunization with CoronaVac in a 0-14 schedule in Chilean adults aged ≥18 years is safe, induces anti-S1-RBD IgG with neutralizing capacity, activates T cells, and promotes the secretion of IFN-γ upon stimulation with SARS-CoV-2 antigens.


Assuntos
COVID-19 , Vacinas Virais , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Chile , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Imunoglobulina G , Pessoa de Meia-Idade , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Adulto Jovem
12.
Front Immunol ; 12: 747830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858404

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible of the current pandemic ongoing all around the world. Since its discovery in 2019, several circulating variants have emerged and some of them are associated with increased infections and death rate. Despite the genetic differences among these variants, vaccines approved for human use have shown a good immunogenic and protective response against them. In Chile, over 70% of the vaccinated population is immunized with CoronaVac, an inactivated SARS-CoV-2 vaccine. The immune response elicited by this vaccine has been described against the first SARS-CoV-2 strain isolated from Wuhan, China and the D614G strain (lineage B). To date, four SARS-CoV-2 variants of concern described have circulated worldwide. Here, we describe the neutralizing capacities of antibodies secreted by volunteers in the Chilean population immunized with CoronaVac against variants of concern Alpha (B.1.1.7), Beta (B.1.351) Gamma (P.1) and Delta (B.617.2). Methods: Volunteers enrolled in a phase 3 clinical trial were vaccinated with two doses of CoronaVac in 0-14 or 0-28 immunization schedules. Sera samples were used to evaluate the capacity of antibodies induced by the vaccine to block the binding between Receptor Binding Domain (RBD) from variants of concern and the human ACE2 receptor by an in-house ELISA. Further, conventional microneutralization assays were used to test neutralization of SARS-CoV-2 infection. Moreover, interferon-γ-secreting T cells against Spike from variants of concern were evaluated in PBMCs from vaccinated subjects using ELISPOT. Results: CoronaVac promotes the secretion of antibodies able to block the RBD of all the SARS-CoV-2 variants studied. Seropositivity rates of neutralizing antibodies in the population evaluated were over 97% for the lineage B strain, over 80% for Alpha and Gamma variants, over 75% for Delta variant and over 60% for the Beta variant. Geometric means titers of blocking antibodies were reduced when tested against SARS-CoV-2 variants as compared to ancestral strain. We also observed that antibodies from vaccinated subjects were able to neutralize the infection of variants D614G, Alpha, Gamma and Delta in a conventional microneutralization assay. Importantly, after SARS-CoV-2 infection, we observed that the blocking capacity of antibodies from vaccinated volunteers increased up to ten times for all the variants tested. We compared the number of interferon-γ-secreting T cells specific for SARS-CoV-2 Spike WT and variants of concern from vaccinated subjects and we did not detect significant differences. Conclusion: Immunization with CoronaVac in either immunization schedule promotes the secretion of antibodies able to block SARS-CoV-2 variants of concern and partially neutralizes SARS-CoV-2 infection. In addition, it stimulates cellular responses against all variants of concern.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinas de Produtos Inativados/imunologia , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/sangue , Humanos , Interferon gama/imunologia , Pessoa de Meia-Idade , Testes de Neutralização , SARS-CoV-2/classificação , Vacinação , Adulto Jovem
13.
Front Immunol ; 12: 742914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659237

RESUMO

Constant efforts to prevent infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are actively carried out around the world. Several vaccines are currently approved for emergency use in the population, while ongoing studies continue to provide information on their safety and effectiveness. CoronaVac is an inactivated SARS-CoV-2 vaccine with a good safety and immunogenicity profile as seen in phase 1, 2, and 3 clinical trials around the world, with an effectiveness of 65.9% for symptomatic cases. Although vaccination reduces the risk of disease, infections can still occur during or after completion of the vaccination schedule (breakthrough cases). This report describes the clinical and immunological profile of vaccine breakthrough cases reported in a clinical trial in progress in Chile that is evaluating the safety, immunogenicity, and efficacy of two vaccination schedules of CoronaVac (clinicaltrials.gov NCT04651790). Out of the 2,263 fully vaccinated subjects, at end of June 2021, 45 have reported symptomatic SARS-CoV-2 infection 14 or more days after the second dose (1.99% of fully vaccinated subjects). Of the 45 breakthrough cases, 96% developed mild disease; one case developed a moderate disease; and one developed a severe disease and required mechanical ventilation. Both cases that developed moderate and severe disease were adults over 60 years old and presented comorbidities. The immune response before and after SARS-CoV-2 infection was analyzed in nine vaccine breakthrough cases, revealing that six of them exhibited circulating anti-S1-RBD IgG antibodies with neutralizing capacities after immunization, which showed a significant increase 2 and 4 weeks after symptoms onset. Two cases exhibited low circulating anti-S1-RBD IgG and almost non-existing neutralizing capacity after either vaccination or infection, although they developed a mild disease. An increase in the number of interferon-γ-secreting T cells specific for SARS-CoV-2 was detected 2 weeks after the second dose in seven cases and after symptoms onset. In conclusion, breakthrough cases were mostly mild and did not necessarily correlate with a lack of vaccine-induced immunity, suggesting that other factors, to be defined in future studies, could lead to symptomatic infection after vaccination with CoronaVac.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas de Produtos Inativados/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , Chile , Comorbidade , Feminino , Humanos , Esquemas de Imunização , Imunogenicidade da Vacina/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Vacinação , Adulto Jovem
14.
medRxiv ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441164

RESUMO

Background: The ongoing COVID-19 pandemic has had a significant impact worldwide, with an incommensurable social and economic burden. The rapid development of safe and protective vaccines against this disease is a global priority. CoronaVac is a vaccine prototype based on inactivated SARS-CoV-2, which has shown promising safety and immunogenicity profiles in pre-clinical studies and phase 1/2 trials in China. To this day, four phase 3 clinical trials are ongoing with CoronaVac in Brazil, Indonesia, Turkey, and Chile. This article reports the safety and immunogenicity results obtained in a subgroup of participants aged 18 years and older enrolled in the phase 3 Clinical Trial held in Chile. Methods: This is a multicenter phase 3 clinical trial. Healthcare workers aged 18 years and older were randomly assigned to receive two doses of CoronaVac or placebo separated by two weeks (0-14). We report preliminary safety results obtained for a subset of 434 participants, and antibody and cell-mediated immunity results obtained in a subset of participants assigned to the immunogenicity arm. The primary and secondary aims of the study include the evaluation of safety parameters and immunogenicity against SARS-CoV-2 after immunization, respectively. This trial is registered at clinicaltrials.gov ( NCT04651790 ). Findings: The recruitment of participants occurred between November 27 th , 2020, until January 9 th , 2021. 434 participants were enrolled, 397 were 18-59 years old, and 37 were ≥60 years old. Of these, 270 were immunized with CoronaVac, and the remaining 164 participants were inoculated with the corresponding placebo. The primary adverse reaction was pain at the injection site, with a higher incidence in the vaccine arm (55.6%) than in the placebo arm (40.0%). Moreover, the incidence of pain at the injection site in the 18-59 years old group was 58.4% as compared to 32.0% in the ≥60 years old group. The seroconversion rate for specific anti-S1-RBD IgG was 47.8% for the 18-59 years old group 14 days post immunization (p.i.) and 95.6% 28 and 42 days p.i. For the ≥60 years old group, the seroconversion rate was 18.1%, 100%, and 87.5% at 14, 28, and 42 days p.i., respectively. Importantly, we observed a 95.7% seroconversion rate in neutralizing antibodies for the 18-59 years old group 28 and 42 days p.i. The ≥60 years old group exhibited seroconversion rates of 90.0% and 100% at 28 and 42 days p.i. Interestingly, we did not observe a significant seroconversion rate of anti-N-SARS-CoV-2 IgG for the 18-59 years old group. For the participants ≥60 years old, a modest rate of seroconversion at 42 days p.i. was observed (37.5%). We observed a significant induction of a T cell response characterized by the secretion of IFN-γ upon stimulation with Mega Pools of peptides derived from SARS-CoV-2 proteins. No significant differences between the two age groups were observed for cell-mediated immunity. Interpretation: Immunization with CoronaVac in a 0-14 schedule in adults of 18 years and older in the Chilean population is safe and induces specific IgG production against the S1-RBD with neutralizing capacity, as well as the activation of T cells secreting IFN-γ, upon recognition of SARS-CoV-2 antigens. Funding: Ministry of Health of the Chilean Government; Confederation of Production and Commerce, Chile; Consortium of Universities for Vaccines and Therapies against COVID-19, Chile; Millennium Institute on Immunology and Immunotherapy.

15.
EClinicalMedicine ; 27: 100517, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33073219

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is responsible for most respiratory tract infections and hospitalizations in infants and represents a significant economic burden for public health. The development of a safe, effective, and affordable vaccine is a priority for the WHO. METHODS: We conducted a double-blinded, escalating-dose phase 1 clinical trial in healthy males aged 18-50 years to evaluate safety, tolerability, and immunogenicity of a recombinant Mycobacterium bovis BCG vaccine expressing the nucleoprotein of RSV (rBCG-N-hRSV). Once inclusion criteria were met, volunteers were enrolled in three cohorts in an open and successive design. Each cohort included six volunteers vaccinated with 5 × 103, 5 × 104, or 1 × 105 CFU, as well as two volunteers vaccinated with the full dose of the standard BCG vaccine. This clinical trial (clinicaltrials.gov NCT03213405) was conducted in Santiago, Chile. FINDINGS: The rBCG-N-RSV vaccine was safe, well-tolerated, and no serious adverse events related to the vaccine were recorded. Serum IgG-antibodies directed against Mycobacterium and the N-protein of RSV increased after vaccination, which were capable of neutralizing RSV in vitro. Additionally, all volunteers displayed increased cellular response consisting of IFN-γ and IL-2 production against PPD and the N-protein, starting at day 14 and 30 post-vaccination respectively. INTERPRETATION: The rBCG-N-hRSV vaccine had a good safety profile and induced specific cellular and humoral responses. FUNDING: This work was supported by Millennium Institute on Immunology and Immunotherapy from Chile (P09/016), FONDECYT 1190830, and FONDEF D11E1098.

16.
Front Immunol ; 10: 1154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214165

RESUMO

The human respiratory syncytial virus (hRSV) is one of the most important causes of upper and lower respiratory tract infections in children and the main cause of bronchiolitis worldwide. Disease manifestations caused by hRSV may vary from mild to severe, occasionally requiring admission and hospitalization in intensive care units. Despite the high morbidity rates associated to bronchiolitis, treatment options against hRSV are limited and there are no current vaccination strategies to prevent infection. Importantly, the early identification of high-risk patients can help improve disease management and prevent complications associated with hRSV infection. Recently, the characterization of pro- and anti-inflammatory cytokine patterns produced during hRSV-related inflammatory processes has allowed the identification of potential prognosis biomarkers. A suitable biomarker should allow predicting the severity of the infection in a simple and opportune manner and should ideally be obtained from non-invasive samples. Among the cytokines associated with hRSV disease severity, IL-8, interferon-alpha (IFN-alpha), and IL-6, as well as the Th2-type cytokines thymic stromal lymphopoietin (TSLP), IL-3, and IL-33 have been highlighted as molecules with prognostic value in hRSV infections. In this review, we discuss current studies that describe molecules produced by patients during hRSV infection and their potential as biomarkers to anticipate the severity of the disease caused by this virus.


Assuntos
Citocinas/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Biomarcadores , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Prognóstico , Infecções por Vírus Respiratório Sincicial/diagnóstico , Índice de Gravidade de Doença , Avaliação de Sintomas
17.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804104

RESUMO

Carbapenem-resistant Klebsiella pneumoniae sequence type 258 (CRKP-ST258) can cause chronic infections in lungs and airways, with repeated episodes of bacteremia. In this report we addressed whether the recruitment of myeloid cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) modulates the clearance of CKRP-ST258 in the lungs and establishes bacterial persistence. Our data demonstrate that during pneumonia caused by a clinical isolate of CRKP-ST258 (KP35) there is an early recruitment of monocyte-myeloid-derived suppressor cells (M-MDSCs) and neutrophils that actively produce IL-10. However, M-MDSCs were the cells that sustained the production of IL-10 over the time of infection evaluated. Using mice unable to produce IL-10 (IL-10-/-), we observed that the production of this cytokine during the infection caused by KP35 is important to control bacterial burden, to prevent lung damage, to modulate cytokine production, and to improve host survival. Importantly, intranasal transfer of bone marrow-derived M-MDSCs from mice able to produce IL-10 at 1 day prior to infection improved the ability of IL-10-/- mice to clear KP35 in the lungs, decreasing their mortality. Altogether, our data demonstrate that IL-10 produced by M-MDSCs is required for bacterial clearance, reduction of lung tissue damage, and host survival during KP35 pneumonia.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/imunologia , Interleucina-10/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/imunologia , Células Supressoras Mieloides/imunologia , Fatores de Virulência/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
18.
J Virol Methods ; 254: 51-64, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29410056

RESUMO

Human Respiratory Syncytial Virus (hRSV), human Metapneumovirus (hMPV) and Adenovirus (ADV), are three of the most prevalent viruses responsible for pneumonia and bronchiolitis in children and elderly worldwide, accounting for a high number of hospitalizations annually. Diagnosis of these viruses is required to take clinical actions that allow an appropriate patient management. Thereby, new strategies to design fast diagnostic methods are highly required. In the present work, six monoclonal antibodies (mAbs, two for each virus) specific for conserved proteins from hRSV, hMPV and ADV were generated and evaluated through different immunological techniques, based on detection of purified protein, viral particles and human samples. In vitro evaluation of these antibodies showed higher specificity and sensitivity than commercial antibodies tested in this study. These antibodies were used to design a sandwich ELISA tests that allowed the detection of hRSV, hMPV, and ADV in human nasopharyngeal swabs. We observed that hRSV and ADV were detected with sensitivity and specificity equivalent to a current Direct Fluorescence Assay (DFA) methodology. However, hMPV was detected with more sensitivity than DFA. Our data suggest that these new mAbs can efficiently identify infected samples and discriminate from patients infected with other respiratory pathogens.


Assuntos
Adenovírus Humanos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Metapneumovirus/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais/imunologia , Adenovírus Humanos/genética , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Metapneumovirus/genética , Camundongos , Vírus Sincicial Respiratório Humano/genética , Sensibilidade e Especificidade
19.
Clin Sci (Lond) ; 128(5): 307-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25222828

RESUMO

Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.


Assuntos
Angiotensina II/farmacologia , Angiotensina I/farmacologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/administração & dosagem , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Clin Sci (Lond) ; 127(4): 251-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24588264

RESUMO

AngII (angiotensin II) induces pathological conditions such as fibrosis in skeletal muscle. In this process, AngII increases ROS (reactive oxygen species) and induces a biphasic phosphorylation of p38 MAPK (mitogen-activated protein kinase). In addition, AngII stimulates the expression and production of TGF (transforming growth factor)-ß1 via a mechanism dependent on ROS production mediated by NADPH oxidase (NOX) and p38 MAPK activation. In the present study, we investigated whether Ang-(1-7) [angiotensin-(1-7)], through the Mas-1 receptor, can counteract the signalling induced by AngII in mouse skeletal muscle and cause a decrease in the expression and further activity of TGF-ß1 in skeletal muscle cells. Our results show that Ang-(1-7) decreased the expression of TGF-ß1 induced by AngII in a dose-dependent manner. In addition, we observed that Ang-(1-7) prevented the increase in TGF-ß1 expression induced by AngII, ROS production dependent on NOX and the early phase of p38 MAPK phosphorylation. Interestingly, Ang-(1-7) also prevented the late phase of p38 MAPK phosphorylation, Smad-2 phosphorylation and Smad-4 nuclear translocation, an increase in transcriptional activity, as determined using the p3TP-lux reporter, and fibronectin levels, all of which are dependent on the TGF-ß1 levels induced by AngII. We also demonstrated that Ang-(1-7) prevented the increase in TGF-ß1, fibronectin and collagen content in the diaphragm of mice infused with AngII. All of these effects were reversed by the administration of A779, indicating the participation of Mas-1. In conclusion, our findings support the hypothesis that Ang-(1-7) decreases the expression and further biological activity of TGF-ß1 induced by AngII in vitro and in vivo.


Assuntos
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/metabolismo , Proteína Smad4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA