Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512312

RESUMO

A total of 14 973 alleles in 29 661 sequenced samples collected between March 2021 and January 2023 by the Mexican Consortium for Genomic Surveillance (CoViGen-Mex) and collaborators were used to construct a thorough map of mutations of the Mexican SARS-CoV-2 genomic landscape containing Intra-Patient Minor Allelic Variants (IPMAVs), which are low-frequency alleles not ordinarily present in a genomic consensus sequence. This additional information proved critical in identifying putative coinfecting variants included alongside the most common variants, B.1.1.222, B.1.1.519, and variants of concern (VOCs) Alpha, Gamma, Delta, and Omicron. A total of 379 coinfection events were recorded in the dataset (a rate of 1.28 %), resulting in the first such catalogue in Mexico. The most common putative coinfections occurred during the spread of Delta or after the introduction of Omicron BA.2 and its descendants. Coinfections occurred constantly during periods of variant turnover when more than one variant shared the same niche and high infection rate was observed, which was dependent on the local variants and time. Coinfections might occur at a higher frequency than customarily reported, but they are often ignored as only the consensus sequence is reported for lineage identification.


Assuntos
COVID-19 , Coinfecção , Humanos , México/epidemiologia , Coinfecção/epidemiologia , Alelos , SARS-CoV-2/genética , COVID-19/epidemiologia
2.
J Leukoc Biol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466822

RESUMO

Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4 T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after TCR-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular NAD and NMN concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the OCR/ECAR ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ectoCD38 catalytic activity in memory CD4 T cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous pro-inflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morpho-functionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4 T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.

3.
Biol Methods Protoc ; 9(1): bpae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371356

RESUMO

It is convenient to study complete genome sequences of human respiratory syncytial virus (hRSV) for ongoing genomic characterization and identification of highly transmissible or pathogenic variants. Whole genome sequencing of hRSV has been challenging from respiratory tract specimens with low viral loads. Herein, we describe an amplicon-based protocol for whole genome sequencing of hRSV subgroup A validated with 24 isolates from nasopharyngeal swabs and infected cell cultures, which showed cycle threshold (Ct) values ranging from 10 to 31, as determined by quantitative reverse-transcription polymerase chain reaction. MinION nanopore generated 3200 to 5400 reads per sample to sequence over 93% of the hRSV-A genome. Coverage of each contig ranged from 130× to 200×. Samples with Ct values of 20.9, 25.2, 27.1, 27.7, 28.2, 28.8, and 29.6 led to the sequencing of over 99.0% of the virus genome, indicating high genome coverage even at high Ct values. This protocol enables the identification of hRSV subgroup A genotypes, as primers were designed to target highly conserved regions. Consequently, it holds potential for application in molecular epidemiology and surveillance of this hRSV subgroup.

4.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067152

RESUMO

The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.


Assuntos
Pneumopatias , Apneia Obstrutiva do Sono , Animais , Humanos , Ritmo Circadiano/genética , Hipóxia , Relógios Biológicos/fisiologia
5.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680283

RESUMO

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Assuntos
COVID-19 , Epidemias , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética
6.
Vaccines (Basel) ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560474

RESUMO

The host immune response to SARS-CoV-2 appears to play a critical role in disease pathogenesis and clinical manifestations in severe COVID-19 cases. Until now, the importance of developing a neutralizing antibody response in the acute phase and its relationship with progression to severe disease or fatal outcome among hospitalized patients remains unclear. In this study, we aim to characterize and compare longitudinally the primary humoral immune host response in the early stages of the disease, looking for an association between neutralization, antibody titers, infective viral lineage, and the clinical outcome in hospitalized and non-hospitalized patients. A total of 111 patients admitted at INER from November 2021 to June 2022 were included. We found that patients with negative or low neutralization showed a significant reduction in survival probability compared to patients with medium or high neutralization. We observed a significant decrease in the median of neutralization in patients infected with viral variants with changes in RBD of the spike protein. Our results suggest that developing an early and robust neutralizing response against SARS-CoV-2 may increase survival probability in critical patients.

7.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230977

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by exacerbated extracellular matrix deposition that disrupts oxygen exchange. Hypoxia and its transcription factors (HIF-1α and 2α) influence numerous circuits that could perpetuate fibrosis by increasing myofibroblasts differentiation and by promoting extracellular matrix accumulation. Therefore, this work aimed to elucidate the signature of hypoxia in the transcriptomic circuitry of IPF-derived fibroblasts. To determine this transcriptomic signature, a gene expression analysis with six lines of lung fibroblasts under normoxia or hypoxia was performed: three cell lines were derived from patients with IPF, and three were from healthy donors, a total of 36 replicates. We used the Clariom D platform, which allows us to evaluate a huge number of transcripts, to analyze the response to hypoxia in both controls and IPF. The control's response is greater by the number of genes and complexity. In the search for specific genes responsible for the IPF fibroblast phenotype, nineteen dysregulated genes were found in lung fibroblasts from IPF patients in hypoxia (nine upregulated and ten downregulated). In this sense, the signaling pathways revealed to be affected in the pulmonary fibroblasts of patients with IPF may represent an adaptation to chronic hypoxia.


Assuntos
Fibrose Pulmonar Idiopática , Fibroblastos/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
8.
BMC Infect Dis ; 22(1): 792, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261802

RESUMO

BACKGROUND: SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized. METHODS: In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. RESULTS: Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. CONCLUSIONS: Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis.


Assuntos
COVID-19 , Coinfecção , Vírus , Humanos , SARS-CoV-2/genética , Coinfecção/epidemiologia , Vírus/genética , DNA Circular , Índice de Gravidade de Doença
9.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893830

RESUMO

Coronavirus disease 2019 (COVID-19) vaccines effectively protect against severe disease and death. However, the impact of the vaccine used, viral variants, and host factors on disease severity remain poorly understood. This work aimed to compare COVID-19 clinical presentations and outcomes in vaccinated and unvaccinated patients in Mexico City. From March to September 2021, clinical, demographic characteristics, and viral variants were obtained from 1014 individuals with a documented SARS-CoV-2 infection. We compared unvaccinated, partially vaccinated, and fully vaccinated patients, stratifying by age groups. We also fitted multivariate statistical models to evaluate the impact of vaccination status, SARS-CoV-2 lineages, vaccine types, and clinical parameters. Most hospitalized patients were unvaccinated. In patients over 61 years old, mortality was significantly higher in unvaccinated compared to fully vaccinated individuals. In patients aged 31 to 60 years, vaccinated patients were more likely to be outpatients (46%) than unvaccinated individuals (6.1%). We found immune disease and age above 61 years old to be risk factors, while full vaccination was found to be the most protective factor against in-hospital death. This study suggests that vaccination is essential to reduce mortality in a comorbid population such as that of Mexico.

10.
Viruses ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35746637

RESUMO

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , México/epidemiologia , Pandemias , Filogenia , SARS-CoV-2/genética
11.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389245

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/genética
12.
Microbiol Spectr ; 10(1): e0124921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019701

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has shown a wide spectrum of clinical manifestations ranging from asymptomatic infections to severe disease and death. Pre-existing medical conditions and age have been mainly linked to the development of severe disease; however, the potential association of viral genetic characteristics with different clinical conditions remains unclear. SARS-CoV-2 variants with increased transmissibility were detected early in the pandemics, and several variants with potential relevance for public health are currently circulating around the world. In this study, we characterized 57 complete SARS-CoV-2 genomes during the exponential growth phase of the early epidemiological curve in Mexico, in April 2020. Patients were categorized under distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors, the patients were less than 60 years old and with no diagnosed comorbidities A trait-association phylogenomic approach was used to explore genotype-phenotype associations, represented by the co-occurrence of mutations, disease severity outcome categories, and clusters of Mexican sequences. Phylogenetic results revealed a higher genomic diversity compared to the initial viruses detected during the early stage of the local epidemic. We identified a total of 90 single nucleotide variants compared to the Wuhan-Hu-1 genome, including 54 nonsynonymous mutations. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors. IMPORTANCE The genetic association of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with different clinical conditions remains unclear and needs further investigation. In this study, we characterized 57 complete SARS-CoV-2 genomes from patients in Mexico with distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors the patients were less than 60 years old and with no diagnosed comorbidities. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors.


Assuntos
COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , Adulto , Fatores Etários , Assistência Ambulatorial/estatística & dados numéricos , COVID-19/complicações , COVID-19/mortalidade , Análise por Conglomerados , Feminino , Genótipo , Hospitalização/estatística & dados numéricos , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Mutação , Fenótipo , Filogenia , Cobertura de Condição Pré-Existente/estatística & dados numéricos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Adulto Jovem
13.
Front Public Health ; 10: 1050673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711379

RESUMO

Background: After the initial outbreak in China (December 2019), the World Health Organization declared COVID-19 a pandemic on March 11th, 2020. This paper aims to describe the first 2 years of the pandemic in Mexico. Design and methods: This is a population-based longitudinal study. We analyzed data from the national COVID-19 registry to describe the evolution of the pandemic in terms of the number of confirmed cases, hospitalizations, deaths and reported symptoms in relation to health policies and circulating variants. We also carried out logistic regression to investigate the major risk factors for disease severity. Results: From March 2020 to March 2022, the coronavirus disease 2019 (COVID-19) pandemic in Mexico underwent four epidemic waves. Out of 5,702,143 confirmed cases, 680,063 were hospitalized (11.9%), and 324,436 (5.7%) died. Even if there was no difference in susceptibility by gender, males had a higher risk of death (CFP: 7.3 vs. 4.2%) and hospital admission risk (HP: 14.4 vs. 9.5%). Severity increased with age. With respect to younger ages (0-17 years), the 60+ years or older group reached adjusted odds ratios of 9.63 in the case of admission and 53.05 (95% CI: 27.94-118.62) in the case of death. The presence of any comorbidity more than doubled the odds ratio, with hypertension-diabetes as the riskiest combination. While the wave peaks increased over time, the odds ratios for developing severe disease (waves 2, 3, and 4 to wave 1) decreased to 0.15 (95% CI: 0.12-0.18) in the fourth wave. Conclusion: The health policy promoted by the Mexican government decreased hospitalizations and deaths, particularly among older adults with the highest risk of admission and death. Comorbidities augment the risk of developing severe illness, which is shown to rise by double in the Mexican population, particularly for those reported with hypertension-diabetes. Factors such as the decrease in the severity of the SARS-CoV2 variants, changes in symptomatology, and advances in the management of patients, vaccination, and treatments influenced the decrease in mortality and hospitalizations.


Assuntos
COVID-19 , Diabetes Mellitus , Hipertensão , Masculino , Humanos , Idoso , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Estudos Longitudinais , México/epidemiologia , Seguimentos , RNA Viral , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia
14.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834967

RESUMO

During the first year of the SARS-CoV-2 pandemic in Mexico, more than two million people were infected. In this study, we analyzed full genome sequences from 27 February 2020 to 28 February 2021 to characterize the geographical and temporal distribution of SARS-CoV-2 lineages and identify the most common circulating lineages during this period. We defined six different geographical regions with particular dynamics of lineage circulation. The Northeast and Northwest regions were the ones that exhibited the highest lineage diversity, while the Central south and South/Southeast regions presented less diversity with predominance of a certain lineage. Additionally, by late February 2021, lineage B.1.1.519 represented more than 89% of all circulating lineages in the country.


Assuntos
COVID-19/virologia , Variação Genética , SARS-CoV-2/genética , COVID-19/epidemiologia , Evolução Molecular , Testes Genéticos , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/classificação , Sequenciamento Completo do Genoma
15.
Sci Rep ; 11(1): 21297, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716394

RESUMO

The COVID-19 outbreak has caused over three million deaths worldwide. Understanding the pathology of the disease and the factors that drive severe and fatal clinical outcomes is of special relevance. Studying the role of the respiratory microbiota in COVID-19 is especially important as the respiratory microbiota is known to interact with the host immune system, contributing to clinical outcomes in chronic and acute respiratory diseases. Here, we characterized the microbiota in the respiratory tract of patients with mild, severe, or fatal COVID-19, and compared it to healthy controls and patients with non-COVID-19-pneumonia. We comparatively studied the microbial composition, diversity, and microbiota structure between the study groups and correlated the results with clinical data. We found differences in the microbial composition for COVID-19 patients, healthy controls, and non-COVID-19 pneumonia controls. In particular, we detected a high number of potentially opportunistic pathogens associated with severe and fatal levels of the disease. Also, we found higher levels of dysbiosis in the respiratory microbiota of patients with COVID-19 compared to the healthy controls. In addition, we detected differences in diversity structure between the microbiota of patients with mild, severe, and fatal COVID-19, as well as the presence of specific bacteria that correlated with clinical variables associated with increased risk of mortality. In summary, our results demonstrate that increased dysbiosis of the respiratory tract microbiota in patients with COVID-19 along with a continuous loss of microbial complexity structure found in mild to fatal COVID-19 cases may potentially alter clinical outcomes in patients. Taken together, our findings identify the respiratory microbiota as a factor potentially associated with the severity of COVID-19.


Assuntos
Bactérias/genética , COVID-19/microbiologia , COVID-19/mortalidade , Disbiose/microbiologia , Microbiota/genética , Sistema Respiratório/microbiologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Adolescente , Adulto , Idoso , COVID-19/patologia , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Adulto Jovem
16.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448936

RESUMO

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , COVID-19/transmissão , Genoma Viral/genética , Humanos , México/epidemiologia , Mutação , Filogenia , Prevalência , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
17.
Virus Res ; 297: 198367, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684421

RESUMO

Long-term infection by human respiratory syncytial virus (hRSV) has been reported in immunocompromised patients. Cell lines are valuable in vitro model systems to study mechanisms associated with viral persistence. Persistent infections in cell cultures have been categorized at least as in "carrier-state", where there exist a low proportion of cells infected by a lytic virus, and as in "steady-state", where most of cells are infected, but in absence of cytophatic effect. Here, we showed that hRSV maintained a steady-state persistence in a macrophage-like cell line after 120 passages, since the viral genome was detected in all of the cells analyzed by fluorescence in situ hybridization, whereas only defective viruses were identified by sucrose gradients and titration assay. Interestingly, eight percent of cells harboring the hRSV genome revealed undetectable expression of the viral nucleoprotein N; however, when this cell population was sorted by flow cytometry and independently cultured, viral protein expression was induced at detectable levels since the first post-sorting passage, supporting that sorted cells harbored the viral genome. Sequencing of the persistent hRSV genome obtained from virus collected from cell-culture supernatants, allowed assembling of a complete genome that displayed 24 synonymous and 38 nonsynonymous substitutions in coding regions, whereas extragenic and intergenic regions displayed 12 substitutions, two insertions and one deletion. Previous reports characterizing mutations in extragenic regulatory sequences of hRSV, suggested that some mutations localized at the 3' leader region of our persistent virus might alter viral transcription and replication, as well as assembly of viral nucleocapsids. Besides, substitutions in P, F and G proteins might contribute to altered viral assembly, budding and membrane fusion, reducing the cytopathic effect and in consequence, contributing to host-cell survival. Full-length mutant genomes might be part of the repertoire of defective viral genomes formed during hRSV infections, contributing to the establishment and maintenance of virus persistence.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Linhagem Celular , Genoma Viral , Humanos , Hibridização in Situ Fluorescente , Macrófagos , Vírus Sincicial Respiratório Humano/genética , Análise de Sequência de DNA
18.
Arch Virol ; 166(2): 475-489, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394173

RESUMO

Domestic swine have been introduced by humans into a wide diversity of environments and have been bred in different production systems. This has resulted in an increased risk for the occurrence and spread of diseases. Although viromes of swine in intensive farms have been described, little is known about the virus communities in backyard production systems around the world. The aim of this study was to describe the viral diversity of 23 healthy domestic swine maintained in rural backyards in Morelos, Mexico, through collection and analysis of nasal and rectal samples. Next-generation sequencing was used to identify viruses that are present in swine. Through homology search and bioinformatic analysis of reads and their assemblies, we found that rural backyard swine have a high degree of viral diversity, different from those reported in intensive production systems or under experimental conditions. There was a higher frequency of bacteriophages and lower diversity of animal viruses than reported previously. In addition, sapoviruses, bocaparvoviruses, and mamastroviruses that had not been reported previously in our country were identified. These findings were correlated with the health status of animals, their social interactions, and the breeding/rearing environment (which differed from intensive systems), providing baseline information about viral communities in backyard swine.


Assuntos
Bacteriófagos/genética , Doenças dos Suínos/virologia , Viroma/genética , Animais , Biologia Computacional/métodos , Fazendas , México , Suínos
19.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641486

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to enabling implementation of effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage A/G, containing mostly sequences from North America, and lineage B/S, containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized 14 independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represented local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described for the country. Within this local transmission cluster, we also identified an H49Y amino acid change in the Spike protein. This mutation represents a homoplasy occurring independently through time and space and may function as a molecular marker to follow any further spread of these viral variants throughout the country. Our results provide a general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts.IMPORTANCE Understanding the introduction, spread, and establishment of SARS-CoV-2 within distinct human populations as well as the evolution of the pandemics is crucial to implement effective control strategies. In this work, we report that the initial virus strains introduced in Mexico came from Europe and the United States and that the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains with a H49Y mutation in the Spike protein, which could be further used as a molecular marker to follow viral spread within the country and the region.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Variação Genética , Genoma Viral , Genômica , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Substituição de Aminoácidos , Betacoronavirus/classificação , COVID-19 , Biologia Computacional/métodos , Infecções por Coronavirus/transmissão , Genômica/métodos , Humanos , México/epidemiologia , Mutação , Pandemias , Filogenia , Pneumonia Viral/transmissão , SARS-CoV-2
20.
Microb Pathog ; 139: 103851, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31715320

RESUMO

BACKGROUND: The presence of the human lung microbiota has been demonstrated in patients with different lung diseases, mainly in sputum samples. However, for study of the alveolar microbiota, a bronchoalveolar lavage (BAL) sample represents the lower respiratory tract (LRT) environment. It is currently unknown whether there is a specific alveolar microbiota profile in human lung diseases, such as pulmonary tuberculosis (TB) and interstitial pneumonia (IP). METHODS: BAL samples from six active TB patients, six IP patients and ten healthy volunteers were used for DNA extraction followed by amplification of the complete bacterial 16S ribosomal RNA gene (16S rDNA). The 16S rDNA was sequenced with a MiSeq Desktop Sequencer, and the data were analysed by QIIME software for taxonomic assignment. RESULTS: The alveolar microbiota in TB and IP patients and healthy volunteers was characterized by six dominant phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria and Cyanobacteria. A significant reduction in the abundance of Firmicutes was observed in IP patients. In TB and IP patients, the diversity of the alveolar microbiota was diminished, characterized by a significant reduction in the abundance of the Streptococcus genus and associated with increased Mycobacterium abundance in TB patients and diminished Acinetobacter abundance in IP patients with respect to their abundances in healthy volunteers. However, an important difference was observed between TB and IP patients: the Fusobacterium abundance was significantly reduced in TB patients. Exclusive genera that were less abundant in patients than in healthy volunteers were characterized for each study group. CONCLUSIONS: This study shows that the alveolar microbiota profile in BAL samples from TB and IP patients, representing infectious and non-infectious lung diseases, respectively, is characterized by decreased diversity.


Assuntos
Doenças Pulmonares Intersticiais/microbiologia , Microbiota , Tuberculose Pulmonar/microbiologia , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Adulto , Idoso , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Lavagem Broncoalveolar , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Feminino , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Fusobactérias/isolamento & purificação , Fusobactérias/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Sistema Respiratório/microbiologia , Escarro/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA