Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(12): 3348-3356, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325541

RESUMO

Hybrid structures with an interface between two different materials with properly aligned energy levels facilitate photo-induced charge separation to be exploited in optoelectronic applications. Particularly, the combination of 2D transition metal dichalcogenides (TMDCs) and dye molecules offers strong light-matter interaction, tailorable band level alignments, and high fluorescence quantum yields. In this work, we aim at the charge or energy transfer-related quenching of the fluorescence of the dye perylene orange (PO) when isolated molecules are brought onto monolayer TMDCs via thermal vapor deposition. Here, micro-photoluminescence spectroscopy revealed a strong intensity drop of the PO fluorescence. For the TMDC emission, in contrast, we observed a relative growth of the trion versus exciton contribution. In addition, fluorescence imaging lifetime microscopy quantified the intensity quenching to a factor of about 103 and demonstrated a drastic lifetime reduction from 3 ns to values much shorter than the 100 ps width of the instrument response function. From the ratio of the intensity quenching that is attributed to hole or energy transfer from dye to semiconductor, we deduce a time constant of several picoseconds at most, pointing to an efficient charge separation suitable for optoelectronic devices.

2.
Phys Chem Chem Phys ; 23(12): 7434-7441, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876103

RESUMO

As previously reported, photoisomerization of the open-shell singlet biradicaloid [TerNP]2CNDmp (2) yields its closed-shell housane-type isomer (3). In the present study, pump-probe spectroscopy was applied to investigate the excited-state dynamics of the photoisomerization, indicating ultrafast de-excitation of the S1 state through a conical intersection, in agreement with computational predictions. The structural and electronic changes during the isomerization process are discussed to gain an understanding of the reaction pathway and the transformation of the biradicaloid to a closed-shell species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA